GenAl Tool: Data Generator

Connected System Plugin for Appian

Appian Corporation

Version 1.0.0
Table of Contents

Overview
Features
Chat Completion Model: OpenAl
Chat Completion Model: Azure OpenAl
Integration
1. One to One Relationship
2. One to Many Relationship
3. Many to One relationship
Data Generator Sample App Setup
Cost Metrics

A W W

11

12
14
17
18

Overview

The GenAlI Tool: Data Generator Connected System allows developers to generate sample data
of an inputted Record Type with generative Al. This tool generates data that adheres to the
structures of 1:1, 1:N, and N:1 relationships by generating the relational data alongside the
primary data. This data is primarily for the use of demonstrating the functionality of an
application with life-like data that fits into a custom database design.

Developers can generate sample records through Appian with this connected system by
entering the credentials retrieved from either OpenAl or Azure OpenAl Studio. This
documentation outlines the process of obtaining and leveraging these credentials within the
Appian platform. The documentation also gives a step by step tutorial on how to set up the
Sample App which can be downloaded from the Appian AppMarket with the connected system
for this tool.

Privacy Policy

All information passed through Al tools will be processed and may remain with the
organizations that develop those tools. Please exercise caution with what information is
disclosed to the Al tool for this reason.

Features

e Generate sample data for each field of a specified Record Type

e Builds data for 1:1, 1:N, and N:1 Record Type relationships

Chat Completion Model: OpenAl

Name *
DG5S C5 Data Generation
Description
Connected System for Data Generator
“
GenaAl Tool: Data Generator Configuration
Authentication
COpenAl Services -
Use the OpenAl services for Chat Completion
OpenAl APl Key *
Enter your OpenAl APIKey. Visit https://beta.openai.com/account/api-keys to get an AP key for your
account.
Completion Model *
gpt-3.5-turbo
Provide the name of the model to use for text completion. Example: gpr-3.5-wirbo for GPT 3.5 Turbo
model, gpt-4 for GPT 4 model. gpt-4 is the most consistent model in determining the size of output
while gpt-3.5-turbo is faster than gpr-4, Visit https:/fplatform.cpenai.com/docs/models/imodel-
endpoint-compatibility and use one of the medels listed under Av1/chat/completions endpoint.
Connection successful
TEST CONNECTION
CANCEL USE IN NEW INTEGRATION m

The Document Summarization Connected system with OpenAl authentication requires the
following credentials: OpenAI API Key and Chat Completion model.

To retrieve your OpenAl API Key:

1. Go to the OpenAl console. Make sure that the API keys menu is selected.

@ Overview Documentation ~ APIreference Examples Playground

ORGANIZATION
o @l ©
Settings

Usage

Rate limits
Members

Billing

USER

API keys

API keys

Your secret APT keys are listed below. Please note that we do not display your secret API keys again
after you generate them

Do not share your APT key with others, or expose it in the browser or other client-side code. In order to
protect the security of your account, OpenAI may also automatically rotate any API key that we've
found has leaked publicly.

NAME KEY CREATED LAST USED ©

Secretkey sk-...dfBF Jan10, 2023 Never £ 0

+ Create new secret key

/'/

Default organization

If you belong to multiple organizations, this setting controls which organization is used by default
when making requests with the API keys above.

Note: You can also specify which organization to use for each AP request. See Authentication to learn more

2. Click on Create new secret key to generate a new API key.
3. Copy the value and save it separately as we won't be able to access it again. Paste the
API key in the connected system dialog box.

Create new secret key

Please save this secret key somewhere safe and accessible. For security
reasons, you won't be able to view it again through your OpenAlI
account. If you lose this secret key, you'll need to generate a new one.

To find the appropriate Chat Completions model:

1. Visit https://platform.openai.com/docs/models/model-endpoint-compatibility and use

one of the models listed under /v1/chat/completions endpoint. Example: gpt-3.5-turbo

https://platform.openai.com/account/api-keys

for GPT 3.5 Turbo model, gpt-4 for GPT 4 model.
a. Each model has unique strengths so try to select the most appropriate for your
use. If you would like to prioritize consistency in the size and format of your
generated summary, we recommend you use a GPT 4 model. If you need to

prioritize speed of generation, GPT 3.5 Turbo might be better suited.

Chat Completion Model: Azure OpenAl

Connected System Properties

GenAl Tool: Data Generator

with ChatGPT. The RecordType should

/"":h
=]

Mame *
DG5 C5 Data Generation

Description

Connected System for Data Generator

GenAl Tool: Data Generator Configuration
Authentication
Azure OpenAl Services -

Use the Azure Open Al services for Chat Completion

Azure Region *
eastus

Provide the Azure region.
Deployment ID *

GPT35_Turbo

Provide the Deployment ID.

Azure APl Key *

Provide the APl Key obtained from Azure OpenAl

Connection successful

TEST CONMNECTION -
CANCEL USE IN NEW INTEGRATION m

This authentication requires the following credentials: Azure Region, Azure Deployment ID and
Azure API Key. Follow these steps to get the Azure credentials.

Set up your Azure OpenAl Account
1. Navigate to Azure’s OpenAl API docs and ensure you have met the listed

prerequisites. View the prerequisites by selecting “Quickstarts.” If you have not
already done so,_create an Azure SUbSCI‘IQtIO

B% Microsoft | Leam Do tation Training Ceifications Q&A Code Samples Assessments Shows Events

Azure Product documentation

Azure OpenAl Service Documentation

tudi Embeddings

-] What is Azure OpenAl Service?

Quickstart: o Creat o Embeddings
”’
M, .
L Completions ? Intro to Azure OpenAl training { } Arure OpenAl Models (-] Support and help options
Additional resources
Azure OpenAl Video Reference Tools

tudi

N

. Apply for access to Azure OpenAl services by completing the form here. You will
need your subscription ID from the previous step.

Request Access to Azure OpenAl Service

* nguined

Please read all instructions carefully and complete form as instructed

Thank yoes for your iNeres! i AZure Openil Serdce. Pleasa submit this form 10 repisier for apgeoval io
accens and use Azurs DpsnAl's Limied Accass anler DALLE D

Agure CIpanal San .--u.-m.,u ——

ok, whet n:c: wivepigioolo anin

3. Create a service and set your domain name.

https://learn.microsoft.com/en-us/azure/cognitive-services/openai/
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/quickstart?pivots=programming-language-studio&tabs=command-line#:~:text=An%20Azure%20subscription%20%2D-,Create%20one%20for%20free,-.
https://aka.ms/oaiapply

ssomoh anae (SR o) A' MY PRSI WL B 90 G

APUPE LEIVICES

t &

R

Rescairoe

L]

Y T —

Hawngate

“bacrgren
Tools

' tkarruaay Lsaew. [
Lewm e wetis brwy prdeny

L

Create and Access API Keys

@ Anre Opendl n 3
- et
b
Tows
hrs Cyah
8] Masous g L T——
@ e B ﬂ Blarrret it b §
[T —— e s i el
e ey

il
L

B

Caikecasd

B T Tr—
[IR pe——

i g o rme

4. Within your service, create and access API keys through “Keys and Endpoints”
under Resource Management. The “Location/Region” listed in this window will be used as
your Azure Region in the Connected System configuration.
e BED EEeeer

OpenAlTestAppian | Keys and Endpoint =

Lo st Bargroe

| ouspnet

| umlwwvuw

Deploy OpenAI Models and Set your Deployment ID

5. Visit the Azure OpenAlI Studio to deploy OpenAl models under your created resource.

e B e

© Cognitive Services | Azure OpenAl «

. b Croste £ Manage seieted resorces () Manage - etres
)
M oo Subicrgrn s o Tyesqusisal Resource group equeh o X Locstion equsis ol X %y Add e
& A Cograre Servans
T— cers e s

Asre Dpemhd

Marma i Locaren Cuntom Do Nama Pricng e Saann 7
O oe Opeti

@ e ——]

@ Language undersianding (s
| Ona maker (clams
Vesan

@ Compurer wnon
@ Comom vacm

§ facean
Do

G Aromayy dermcror
B Cortent moderanar
O Peonsioe

B eer g

6. Click into your resource to enter the Azure OpenAl Studio. Navigate to “"Models” seen as a
tab on the left side of the screen. After selecting the best OpenAl Model for your data and use
case, deploy your selected chat completions model. The deployment ID you create during
deployment will be used when configuring your Connected System.

Mo
N Models
PO - e octe
Playgt cend
- Provaded modeh
L]
e
" Mol rare Mol verwon Crested ot Satun Deployabsle
. -y e
. Modeh
.
- g jaumnesorM 0 © Suoe 300
e L
[ape— -
. b
" i (reded e
et dawwrs 000 WV 00 P el Dpedied Yeu
Tent-embrddieg sdu 000 2 A/2/202) ROO MM Sucomeded Y
Tent embeaeg ads 002 1 22023 700 PM =) Sucomedied 2 veu
[Rp—— 1 S/TWI0LZ B0 P @ Sucoeeded e
et ity care- 001 { SN 800 PN © Sucoseded @ve

10

Integration

Generate sample records for a Record Type.

ChatGPT Prompt used:

“Create example data for a <relationship> based on the given input. The input consists of an
array of JSON objects, each comprising "lastRowData" (representing the last row of a table) and
"numberOfRows" (indicating the desired nhumber of generated rows). The resulting JSON array
should consist of objects with field names as keys, each containing arrays of sample data. The
first object serves as the base table, and subsequent tables are linked through an
<relationship>. In cases where tables share field names, ensure they are correlated.To ensure
correlation between primary keys in the base and related tables, start data generation for each
related table from the next available value after the corresponding primary key in the base
table. If tables share field names, ensure that they are correlated. Output the JSON array
without introducing newlines within the fields. The generated data should be different from the
lastRowData. The fields other than primary key and foreign keys for all the tables should be Al
generated. This adjustment aims to guarantee a coherent relationship between primary keys in
both the base and related tables. Provide the JSON array without introducing newlines for the
following input.The datatype of the fields are: <Fields Info>"

Note: The recor ner for n

using this tool. This is because the Data Generator tool relies on the last row of data in the
specified record type’s data as a model for the generated data and to ensure the primary key is
incremented from the correct value. Additionally, we do not advise generating large amounts of
data (more than 45 rows) in a single integration call. To generate more data, we recommend
that you make multiple separate calls to the Data Generator tool.

1. One to One Relationship

Inputs:

Primary Record Last Row (Text) - Required - JSON string from the last row of the primary
record type to generate. Use the recordqueryhelper function to retrieve this data. The input of
recordqueryhelper should be the Record Type to generate, wrapped in a toxml() function. An
example of this format: recordqueryhelper(toxml(recordType!{recordName}))

Related Records Last Row (List of Text) — Optional - Details of the records related to the
primary record. If the primary record generated references another record by a foreign key in a
1 to many relationship, add the related record in a list here. This record input will follow the
same format as above where each record must be wrapped in a recordqueryhelper() and a
toxml() function. More instructions on this format:

11

Provide the JSON strings returned from the recordqueryhelper function in List of Text format.
Example: { recordqueryhelper(toxml(recordType!{recordTypel})),
recordqueryhelper(toxml(recordType!{recordType2})) }

Number of Rows of Primary Record (Integer) — Optional - Provide the number of Primary
Record Rows to be generated. Default: 1

Custom Instructions(List of Text) — Optional - Provide any additional instructions for the data
generation in a list of text. These instructions can be written in natural language. Example: {
“all emails should be gmail accounts”, "generate any dates in dd-mm-yy format"}

'?. DGS_INT_generateRecordData_OneToOne

Connected System * Rule Input Name Expression Value
@ DGS Cs Data Generation X “{"name":"DGS Student”,"lastRow":
etonati- L+ recordaueryhelger(X CprimarnyKeyNamer tudentid’
v toxml([Erecordrype nt) .
Relationship primaryRecordLastRow (Text) N e = elds™:
One to One - ["studentid”,"studentName”,"birth
Date"."gradeLev...More
Provide the relationship between the record. Valid values: ONE_TO_ONE, ONE_TO_MANY,
MANY_TO_ONE. List of Text String: 1 item
Primary Record Last Row relatedRecordsLastRow (List of 2 r{({'name DG Student
- Contact”,"lastRow":
< Text String) 3+ i2 =) N . .
2) + {'primarykeyName":"contactid", fi
. Use the recordqueryhelper elds"["contac...More
he Record Type to T
rdqueryhelper toxmi(11
recordTypel{recordName} }) numberOfPrimaryRecordRows
Related Records Last Row (Number (Integer))
*Q % X! e wTTE 2] 1 null
dRecordslastio custominstruction (Text) null (Text)

« ® Result Request Response

Success!

Time
2,765 ms
Prepare: < 1 ms - Execute: 2765 ms ms) - Transform: <7 ms

Value: Result @

Place cursor on function, rufe, or constant to display help

ings returned from the
ordqueryhelper{toxmi(recordType!
ype2))

Record Details of the Related Records. Provide the JSO
recordqus function in List of Text format. Example

frecordType1})), recordqueryhelper{toxmi(recordTypelirecord

Output: Dictionary

{relatedRecordsData: {{data: {{studentld: 15, contactld: 6, contactEmail:
"emilyjohnson@mail.com", contactPhone: "7890123456"}}, name: "DGS Student Contact"}},
success: true, primaryRecordData: {data: {{studentld: 15, gradeLevel: 9, studentName: "Emily
Johnson", birthDate: "2006-05-12"}}, name: "DGS Student"}}

12

2. One to Many Relationship

Inputs:

Primary Record Last Row (Text) - Required - JSON string from the last row of the primary
record type to generate. Use the recordqueryhelper function to retrieve this data. The input of
recordqueryhelper should be the Record Type to generate, wrapped in a toxml() function. An
example of this format: recordqueryhelper(toxml(recordType!{recordName}))

Related Records Last Row (List of Text) — Optional - Details of the records related to the
primary record. If the primary record generated references another record by a foreign key in a
1 to many relationship, add the related record in a list here. This record input will follow the
same format as above where each record must be wrapped in a recordqueryhelper() and a
toxml() function. More instructions on this format:

Provide the JSON strings returned from the recordqueryhelper function in List of Text format.
Example: { recordqueryhelper(toxml(recordType!{recordTypel})),
recordqueryhelper(toxml(recordType!{recordType2})) }

Number of Rows of Primary Record (Integer) — Optional - Provide the number of Primary
Record Rows to be generated. Default: 1

Rows per Primary Record (Integer) — Optional - Provide the number of related records to

generate for each primary record generated. For example, assume your primary record is a
Student record type and your related record type is Parent. If you want each student record to
reference two parent records, input 2 here. Default: 1

Custom Instructions(List of Text) — Optional - Provide any additional instructions for the data
generation in a list of text. These instructions can be written in natural language. Example: {

mnmon

“all emails should be gmail accounts”, "generate any dates in dd-mm-yy format"}

13

I?. DGS_INT_generateRecordData_OneToMany

Connected System * Rule Input Name Expression Value

% DGSCS Data Generation X "("name™"DGS

. . Student","lastRow
Relationship * n

recordqueryhelper({"primaryKeyNam

One to Many - 1x
primaryRecordLas 2+ toxml(|[F]recordType!ds e""studentld”,"fiel
Provide the relationship between the record. Valid values: ONE_TO_ONE, ONE_TO_MANY, tRow (Text) 3) ds":
MANY_TO_ONE. v ["studentld”,"stud

entName","birthD

Primary Record Last Row
ate","gradelev...M

rilprimaryRecordLastRow

ore
JSON string from the last row of the primary record type to generate. Use the recordqueryhelper
function to retrieve this data. The input of recordqueryhelper should be the Record Type to Lict of Towt Creina.
generate, wrapped in a toxml() function. An example of this format: recordqueryhelper(toxml(*
recordType!{recordName}) @ Result Request Response
Related Records Last Row
B — Success!
P EEEMTQAXRHFFATDE e (,
1 rilrelatedRecordsLastRow .
Time
5722 ms
Prepare: < 1 ms - Execute: 5,722 ms (Senc it/ Rec 1 ms) - Transform: < 1 ms

Value: Result @

~ Dictionary
~ relatedRecordsData List of Dictionary - 1 item
~ Dictionary
~ data List of Dictionary - 4 items
~ Dictionary

studentld 15 (Number (Decimal))

parentName "Emma Wilson" (Text)

parentEmail "emmawilson@mail.com" (Text)

parentld 20 (Number (Decimal))
Place cursor on function, rule, or constant to display help parentPhone "9876-5432" (Text)

2 « Dictionary

studentld 15 (Number (Decimal))
TEST REQUEST parentName "Oliver Johnson" (Text)

marantEmail Talivarinhnean@mail cam® (Mot

Output: Dictionary

{relatedRecordsData: {{data: {{studentld: 15, parentName: "John Thompson", parentEmail:
"johnthompson@mail.com", parentld: 20, parentPhone: "5678-9012"}, {studentld: 15,
parentName: "Sarah Johnson", parentEmail: "sarahjohnson@mail.com", parentld: 21,
parentPhone: "3456-7890"}, {studentld: 16, parentName: "Michael Smith", parentEmail:
"michaelsmith@mail.com”, parentld: 22, parentPhone: "6789-0123"}, {studentId: 16,
parentName: "Jessica Wilson", parentEmail: "jessicawilson@mail.com", parentld: 23,
parentPhone: "9012-3456"}}, name: "DGS Parent"}}, success: true, primaryRecordData: {data:
{{studentId: 15, gradeLevel: 10, studentName: "Isabella Thompson", birthDate: "2006-05-20"},
{studentld: 16, gradeLevel: 11, studentName: "Oliver Johnson", birthDate: "2005-09-13"}},
name: "DGS Student"}}

3. Many to One relationship

Inputs:

14

Primary Record Last Row (Text) - Required - JSON string from the last row of the primary
record type to generate. Use the recordqueryhelper function to retrieve this data. The input of
recordqueryhelper should be the Record Type to generate, wrapped in a toxml() function. An
example of this format: recordqueryhelper(toxml(recordType!{recordName}))

Related Records Last Row (List of Text) — Optional - Details of the records related to the
primary record. If the primary record generated references another record by a foreign key in a
1 to many relationship, add the related record in a list here. This record input will follow the
same format as above where each record must be wrapped in a recordqueryhelper() and a
toxml() function. More instructions on this format:

Provide the JSON strings returned from the recordqueryhelper function in List of Text format.
Example: { recordqueryhelper(toxml(recordType!{recordTypel})),
recordqueryhelper(toxml(recordType!{recordType2})) }

Number of Rows of Primary Record (Integer) — Optional - Provide the number of Primary
Record Rows to be generated. Default: 1

Number of Primary Record Rows per Related Record (Integer) — Optional - Provide the

number of primary record rows per related record generated. This number will define the

“many” in the many to one relationship being generated. For example, if you would like to
create student and parent records in a 3:1 relationship, where every every three students
reference the same parent, input 3 in this field. Default: 1

Custom Instructions(List of Text) — Optional - Provide any additional instructions for the data
generation in a list of text. These instructions can be written in natural language. Example: {

mnmon

“all emails should be gmail accounts”, "generate any dates in dd-mm-yy format"}

15

'?. DGS_INT_generateRecordData_ManyToOne

Connected System * Rule Input Name Expression Value

i DGS CS Data Generation X “("name""DGS
Parent","lastRow":
{"primaryKeyNam
e""parentld”,"field

Relationship *

1+ recordqueryhelper(
Many to One -

primaryRecordlLas 2 toxml(|[E recordTypetnes "

o _ tRow (Text) 3) o
Provide the relationship between the record. Valid values: ONE_TO_ONE, ONE_TO_MANY, R [parent\d "stude
MANY_TO_ONE. ntld","parentNam
Primary Record Last Row :ll’ parentEmalli

ore
rilprimaryRecordLastRow
JSON string from the last row of the primary record type to generate. Use the recordqueryhelper List of Text String:
function to retrieve this data. The input of recardqueryhelper should be the Record Type to 1 item
generate, wrapped in a toxml() function. An example of this format: recordqueryhelper{ toxml("("name""DGS
recordType!{recordName})) .)
1v { Student”,"lastRow
relatedRecordsLas
Related Records Last Row R L T 2+ recordqueryhelper(
tRow (List of Text 3 toxml (| [recordTyp {"primaryKeyNam
P EE = /* | =, Strin x i
£ EEE/MTFTQ R XL HTE e « 2) 4) enrstudentld”, fiel

1 rilrelatedRecordsLastRow

+
@ Result Request Response
Success!
Time
6,213 ms
Prepare. <1 ms - Execute: 5,213 ms (5 ait [Rec 1 ms) - Transform: <1 ms

Value: Result @
w Dictionary
w relatedRecordsData List of Dictionary - 1 item
w Dictionary
~ data List of Dictionary - 2 items
Place cursor on function, rule, or constant to display help + Dictionary
Dictionary

studentld 15 (Number (Decimal))

TEST REQUEST gradeLevel 12 (Number (Integer))
studentName "Ethan Smith" (Text)

Output: Dictionary

{relatedRecordsData: {{data: {{studentId: 17, gradelLevel: 10, studentName: "Emily Wilson",
birthDate: "2004-07-17"}, {studentld: 18, gradelLevel: 11, studentName: "Michael Anderson",
birthDate: "2003-09-08"}}, name: "DGS Student"}}, success: true, primaryRecordData: {data:
{{studentId: 17, parentName: "Olivia Smith", parentEmail: "oliviasmith@mail.com", parentId:
24, parentPhone: "2734-9502"}, {studentld: 17, parentName: "Emma Johnson", parentEmail:
"emmajohnson@mail.com", parentld: 25, parentPhone: "3847-2034"}, {studentId: 17,
parentName: "Ava Davis", parentEmail: "avadavis@mail.com", parentld: 26, parentPhone:
"1023-8394"}, {studentld: 18, parentName: "Sophia Williams", parentEmail:
"sophiawilliams@mail.com", parentld: 27, parentPhone: "3947-5832"}, {studentId: 18,
parentName: "Charlotte Brown", parentEmail: "charlottebrown@mail.com", parentld: 28,
parentPhone: "2039-4958"}, {studentld: 18, parentName: "Amelia Garcia", parentEmail:
"ameliagarcia@mail.com", parentld: 29, parentPhone: "5839-1039"}}, name: "DGS Parent"}}

16

Data Generator Sample App Setup

To configure the sample app to begin experimenting with the GenAl Tool: Data Generator,
complete the following steps.

1. Download the necessary files: Find the Data Generator Connected System from
Appian’s App Market. Select download and open the zip file to access the Sample
Application (.zip), an SQL script (.sql), a Sample App Properties file (.properties), and
the plug-in jar file (.jar).

2. Import the sample data: In your Appian Cloud Database, select the database where
you would like to create a new table for the sample record data. Select Import and
“Choose File.” Select the SQL file from the downloaded package and hit the “Import”
button.

3. Configure the properties file: In the properties file downloaded from the AppMarket,
add your API key to either the OpenAl or Azure OpenAl API key variable, depending on
your preference and your models available.

=¢--Provide your OpenAl API key here-->

=<--Provide your Azure API key here-->

4. Import the sample application: In your Appian designer, select the import button
and upload the downloaded sample app zip file and the configured properties file.

Import

I = Extend your applicaticns by importing soluticns and utilities. Browse the AppMarket !
When inspecting the package for missing precedents, no items are added or medified. The
deployments view will be updated when import is completed.

Package (ZIP) @ *

@ Data Generation Connected System Demo Application
ZIP-81.76 KB

Include related import customization file
Import Customization File (PROPERTIES) @

Data Generation Connected System Demo Application
PROPERTIES - 225 KB

CANCEL INSPECT JELuIZelq}

5. Finish configuring sample data: In each of the three sample records (Parent,
Student, and Student Contact), configure the data source by selecting "Change Data

17

Source” in the top right of each Data Model view. Connect to the table in your database
that was created with the SQL script in step #2.

6. Explore the tool: You can now freely experiment with the Data Generation tool from
the sample application. Each relationship available in the integration has been
preconfigured in the interface, all you need to do is:

a.
b.
(o

Select the relationship to generate

Enter the number of records to generate

Determine the “Many” in the “One to Many” or “Many to One” relationship, if
appropriate

Enter custom instructions if desired, this is optional.

Select “Generate” to view the generated data. Edit the data in the editable grid
that appears below to your specifications.

Select “Write to Records” and view the new data in the record view tabs available
in the sample app tabs.

Cost Metrics

The below metrics are for a reference on the cost incurred in the Query Documents Integration
for the records DGS Parent, DGS Student and DGS Student Contact in a single request. This
pricing is consistent between both OpenAl and AzureOpenAl models.

Cost incurred

Number of Rows Tokens used

GPT 3.5 Turbo GPT 4
5 731 $0.0014 $0.043
10 1044 $0.0020 $0.062
20 1747 $0.0034 $0.105
30 2314 $0.0046 $0.139

18

