
GenAI Tool: Data Generator

Connected System Plugin for Appian

Appian Corporation

Version 1.0.0

Table of Contents

Overview 3
Features 3

Chat Completion Model: OpenAI 4
Chat Completion Model: Azure OpenAI 7

Integration 11
1. One to One Relationship 11
2. One to Many Relationship 12
3. Many to One relationship 14

Data Generator Sample App Setup 17
Cost Metrics 18

2

Overview
The GenAI Tool: Data Generator Connected System allows developers to generate sample data
of an inputted Record Type with generative AI. This tool generates data that adheres to the
structures of 1:1, 1:N, and N:1 relationships by generating the relational data alongside the
primary data. This data is primarily for the use of demonstrating the functionality of an
application with life-like data that fits into a custom database design.

Developers can generate sample records through Appian with this connected system by
entering the credentials retrieved from either OpenAI or Azure OpenAI Studio. This
documentation outlines the process of obtaining and leveraging these credentials within the
Appian platform. The documentation also gives a step by step tutorial on how to set up the
Sample App which can be downloaded from the Appian AppMarket with the connected system
for this tool.

Privacy Policy
All information passed through AI tools will be processed and may remain with the
organizations that develop those tools. Please exercise caution with what information is
disclosed to the AI tool for this reason.

Features

● Generate sample data for each field of a specified Record Type

● Builds data for 1:1, 1:N, and N:1 Record Type relationships

3

Chat Completion Model: OpenAI

The Document Summarization Connected system with OpenAI authentication requires the
following credentials: OpenAI API Key and Chat Completion model.

4

To retrieve your OpenAI API Key:

1. Go to the OpenAI console. Make sure that the API keys menu is selected.

2. Click on Create new secret key to generate a new API key.
3. Copy the value and save it separately as we won’t be able to access it again. Paste the

API key in the connected system dialog box.

To find the appropriate Chat Completions model:

1. Visit https://platform.openai.com/docs/models/model-endpoint-compatibility and use

one of the models listed under /v1/chat/completions endpoint. Example: gpt-3.5-turbo

5

https://platform.openai.com/account/api-keys

for GPT 3.5 Turbo model, gpt-4 for GPT 4 model.

a. Each model has unique strengths so try to select the most appropriate for your

use. If you would like to prioritize consistency in the size and format of your

generated summary, we recommend you use a GPT 4 model. If you need to

prioritize speed of generation, GPT 3.5 Turbo might be better suited.

6

Chat Completion Model: Azure OpenAI

This authentication requires the following credentials: Azure Region, Azure Deployment ID and
Azure API Key. Follow these steps to get the Azure credentials.

7

Set up your Azure OpenAI Account
1. Navigate to Azure’s OpenAI API docs and ensure you have met the listed

prerequisites. View the prerequisites by selecting “Quickstarts.” If you have not
already done so, create an Azure subscription.

2. Apply for access to Azure OpenAI services by completing the form here. You will
need your subscription ID from the previous step.

3. Create a service and set your domain name.

8

https://learn.microsoft.com/en-us/azure/cognitive-services/openai/
https://learn.microsoft.com/en-us/azure/cognitive-services/openai/quickstart?pivots=programming-language-studio&tabs=command-line#:~:text=An%20Azure%20subscription%20%2D-,Create%20one%20for%20free,-.
https://aka.ms/oaiapply

Create and Access API Keys
4. Within your service, create and access API keys through “Keys and Endpoints”

under Resource Management. The “Location/Region” listed in this window will be used as
your Azure Region in the Connected System configuration.

Deploy OpenAI Models and Set your Deployment ID

5. Visit the Azure OpenAI Studio to deploy OpenAI models under your created resource.

9

6. Click into your resource to enter the Azure OpenAI Studio. Navigate to “Models” seen as a
tab on the left side of the screen. After selecting the best OpenAI Model for your data and use
case, deploy your selected chat completions model. The deployment ID you create during
deployment will be used when configuring your Connected System.

10

Integration
Generate sample records for a Record Type.

ChatGPT Prompt used:
“Create example data for a <relationship> based on the given input. The input consists of an
array of JSON objects, each comprising "lastRowData" (representing the last row of a table) and
"numberOfRows" (indicating the desired number of generated rows). The resulting JSON array
should consist of objects with field names as keys, each containing arrays of sample data. The
first object serves as the base table, and subsequent tables are linked through an
<relationship>. In cases where tables share field names, ensure they are correlated.To ensure
correlation between primary keys in the base and related tables, start data generation for each
related table from the next available value after the corresponding primary key in the base
table. If tables share field names, ensure that they are correlated. Output the JSON array
without introducing newlines within the fields. The generated data should be different from the
lastRowData. The fields other than primary key and foreign keys for all the tables should be AI
generated. This adjustment aims to guarantee a coherent relationship between primary keys in
both the base and related tables. Provide the JSON array without introducing newlines for the
following input.The datatype of the fields are:<Fields Info>"

Note: The record type to generate data for needs to have at least one instance of data before
using this tool. This is because the Data Generator tool relies on the last row of data in the
specified record type’s data as a model for the generated data and to ensure the primary key is
incremented from the correct value. Additionally, we do not advise generating large amounts of
data (more than 45 rows) in a single integration call. To generate more data, we recommend
that you make multiple separate calls to the Data Generator tool.

1. One to One Relationship

Inputs:

Primary Record Last Row (Text) - Required - JSON string from the last row of the primary
record type to generate. Use the recordqueryhelper function to retrieve this data. The input of
recordqueryhelper should be the Record Type to generate, wrapped in a toxml() function. An
example of this format: recordqueryhelper(toxml(recordType!{recordName}))

Related Records Last Row (List of Text) – Optional - Details of the records related to the
primary record. If the primary record generated references another record by a foreign key in a
1 to many relationship, add the related record in a list here. This record input will follow the
same format as above where each record must be wrapped in a recordqueryhelper() and a
toxml() function. More instructions on this format:

11

Provide the JSON strings returned from the recordqueryhelper function in List of Text format.
Example: { recordqueryhelper(toxml(recordType!{recordType1})),
recordqueryhelper(toxml(recordType!{recordType2})) }

Number of Rows of Primary Record (Integer) – Optional - Provide the number of Primary
Record Rows to be generated. Default: 1

Custom Instructions(List of Text) – Optional - Provide any additional instructions for the data
generation in a list of text. These instructions can be written in natural language. Example: {
“all emails should be gmail accounts”, "generate any dates in dd-mm-yy format"}

Output: Dictionary

{relatedRecordsData: {{data: {{studentId: 15, contactId: 6, contactEmail:
"emilyjohnson@mail.com", contactPhone: "7890123456"}}, name: "DGS Student Contact"}},
success: true, primaryRecordData: {data: {{studentId: 15, gradeLevel: 9, studentName: "Emily
Johnson", birthDate: "2006-05-12"}}, name: "DGS Student"}}

12

2. One to Many Relationship

Inputs:

Primary Record Last Row (Text) - Required - JSON string from the last row of the primary
record type to generate. Use the recordqueryhelper function to retrieve this data. The input of
recordqueryhelper should be the Record Type to generate, wrapped in a toxml() function. An
example of this format: recordqueryhelper(toxml(recordType!{recordName}))

Related Records Last Row (List of Text) – Optional - Details of the records related to the
primary record. If the primary record generated references another record by a foreign key in a
1 to many relationship, add the related record in a list here. This record input will follow the
same format as above where each record must be wrapped in a recordqueryhelper() and a
toxml() function. More instructions on this format:

Provide the JSON strings returned from the recordqueryhelper function in List of Text format.
Example: { recordqueryhelper(toxml(recordType!{recordType1})),
recordqueryhelper(toxml(recordType!{recordType2})) }

Number of Rows of Primary Record (Integer) – Optional - Provide the number of Primary
Record Rows to be generated. Default: 1

Rows per Primary Record (Integer) – Optional - Provide the number of related records to
generate for each primary record generated. For example, assume your primary record is a
Student record type and your related record type is Parent. If you want each student record to
reference two parent records, input 2 here. Default: 1

Custom Instructions(List of Text) – Optional - Provide any additional instructions for the data
generation in a list of text. These instructions can be written in natural language. Example: {
“all emails should be gmail accounts”, "generate any dates in dd-mm-yy format"}

13

Output: Dictionary

{relatedRecordsData: {{data: {{studentId: 15, parentName: "John Thompson", parentEmail:
"johnthompson@mail.com", parentId: 20, parentPhone: "5678-9012"}, {studentId: 15,
parentName: "Sarah Johnson", parentEmail: "sarahjohnson@mail.com", parentId: 21,
parentPhone: "3456-7890"}, {studentId: 16, parentName: "Michael Smith", parentEmail:
"michaelsmith@mail.com", parentId: 22, parentPhone: "6789-0123"}, {studentId: 16,
parentName: "Jessica Wilson", parentEmail: "jessicawilson@mail.com", parentId: 23,
parentPhone: "9012-3456"}}, name: "DGS Parent"}}, success: true, primaryRecordData: {data:
{{studentId: 15, gradeLevel: 10, studentName: "Isabella Thompson", birthDate: "2006-05-20"},
{studentId: 16, gradeLevel: 11, studentName: "Oliver Johnson", birthDate: "2005-09-13"}},
name: "DGS Student"}}

3. Many to One relationship

Inputs:

14

Primary Record Last Row (Text) - Required - JSON string from the last row of the primary
record type to generate. Use the recordqueryhelper function to retrieve this data. The input of
recordqueryhelper should be the Record Type to generate, wrapped in a toxml() function. An
example of this format: recordqueryhelper(toxml(recordType!{recordName}))

Related Records Last Row (List of Text) – Optional - Details of the records related to the
primary record. If the primary record generated references another record by a foreign key in a
1 to many relationship, add the related record in a list here. This record input will follow the
same format as above where each record must be wrapped in a recordqueryhelper() and a
toxml() function. More instructions on this format:

Provide the JSON strings returned from the recordqueryhelper function in List of Text format.
Example: { recordqueryhelper(toxml(recordType!{recordType1})),
recordqueryhelper(toxml(recordType!{recordType2})) }

Number of Rows of Primary Record (Integer) – Optional - Provide the number of Primary
Record Rows to be generated. Default: 1

Number of Primary Record Rows per Related Record (Integer) – Optional - Provide the
number of primary record rows per related record generated. This number will define the
“many” in the many to one relationship being generated. For example, if you would like to
create student and parent records in a 3:1 relationship, where every every three students
reference the same parent, input 3 in this field. Default: 1

Custom Instructions(List of Text) – Optional - Provide any additional instructions for the data
generation in a list of text. These instructions can be written in natural language. Example: {
“all emails should be gmail accounts”, "generate any dates in dd-mm-yy format"}

15

Output: Dictionary

{relatedRecordsData: {{data: {{studentId: 17, gradeLevel: 10, studentName: "Emily Wilson",

birthDate: "2004-07-17"}, {studentId: 18, gradeLevel: 11, studentName: "Michael Anderson",

birthDate: "2003-09-08"}}, name: "DGS Student"}}, success: true, primaryRecordData: {data:

{{studentId: 17, parentName: "Olivia Smith", parentEmail: "oliviasmith@mail.com", parentId:

24, parentPhone: "2734-9502"}, {studentId: 17, parentName: "Emma Johnson", parentEmail:

"emmajohnson@mail.com", parentId: 25, parentPhone: "3847-2034"}, {studentId: 17,

parentName: "Ava Davis", parentEmail: "avadavis@mail.com", parentId: 26, parentPhone:

"1023-8394"}, {studentId: 18, parentName: "Sophia Williams", parentEmail:

"sophiawilliams@mail.com", parentId: 27, parentPhone: "3947-5832"}, {studentId: 18,

parentName: "Charlotte Brown", parentEmail: "charlottebrown@mail.com", parentId: 28,

parentPhone: "2039-4958"}, {studentId: 18, parentName: "Amelia Garcia", parentEmail:

"ameliagarcia@mail.com", parentId: 29, parentPhone: "5839-1039"}}, name: "DGS Parent"}}

16

Data Generator Sample App Setup

To configure the sample app to begin experimenting with the GenAI Tool: Data Generator,
complete the following steps.

1. Download the necessary files: Find the Data Generator Connected System from
Appian’s App Market. Select download and open the zip file to access the Sample
Application (.zip), an SQL script (.sql), a Sample App Properties file (.properties), and
the plug-in jar file (.jar).

2. Import the sample data: In your Appian Cloud Database, select the database where
you would like to create a new table for the sample record data. Select Import and
“Choose File.” Select the SQL file from the downloaded package and hit the “Import”
button.

3. Configure the properties file: In the properties file downloaded from the AppMarket,
add your API key to either the OpenAI or Azure OpenAI API key variable, depending on
your preference and your models available.

4. Import the sample application: In your Appian designer, select the import button
and upload the downloaded sample app zip file and the configured properties file.

5. Finish configuring sample data: In each of the three sample records (Parent,
Student, and Student Contact), configure the data source by selecting “Change Data

17

Source” in the top right of each Data Model view. Connect to the table in your database
that was created with the SQL script in step #2.

6. Explore the tool: You can now freely experiment with the Data Generation tool from
the sample application. Each relationship available in the integration has been
preconfigured in the interface, all you need to do is:

a. Select the relationship to generate
b. Enter the number of records to generate
c. Determine the “Many” in the “One to Many” or “Many to One” relationship, if

appropriate
d. Enter custom instructions if desired, this is optional.
e. Select “Generate” to view the generated data. Edit the data in the editable grid

that appears below to your specifications.
f. Select “Write to Records” and view the new data in the record view tabs available

in the sample app tabs.

Cost Metrics
The below metrics are for a reference on the cost incurred in the Query Documents Integration
for the records DGS Parent, DGS Student and DGS Student Contact in a single request. This
pricing is consistent between both OpenAI and AzureOpenAI models.

Number of Rows Tokens used
Cost incurred

GPT 3.5 Turbo GPT 4

5 731 $0.0014 $0.043

10 1044 $0.0020 $0.062

20 1747 $0.0034 $0.105

30 2314 $0.0046 $0.139

18

