
Kafka Tools
Kafka Tools provides the following functionality that allows publishing to and consuming from topics
on Kafka Servers.

Smart Services

Publish To Kafka
Consume From Kafka

Performance and Scalability Considerations

Because of the nature of Kafka which is designed to handle large volumes of messages, Appian
strongly recommends to consider the performance and scalability impacts of consuming large
volumes of messages from Kafka into Appian.

To implement this plugin successfully in an application, you must:

1. Use the Transaction Manager to throttle the processing of the messages
2. Only consume messages that are relevant to your use cases. This can be done by creating

dedicated Kafka topics for Appian and implementing message filters
3. Conduct performance testing with a production-like volume of messages and with the final

process models and rules designed to handle the messages
4. Tune the configuration of the polling intervals, sleeping intervals, number of consumers and the

Transaction Manager settings to not overload Appian and to leave resources available for end-
user activities

Installation Instructions

1. Install Transaction Manager
i. Follow instructions to create new job_type(s) and process model(s) to handle kafaka topics,

could be one or multiple depending on requirements
2. For Appian Cloud environments, install the Kafka Tools plugin from the Appian App Market
3. For self-managed environments, copy the ps-plugin-KafkaTools-X.jar file into your

$APPIAN_HOME/data/_admin/plugins directory. The plug-in will be installed and available
automatically.

4. Create Third-Party Credentials (explained below)
i. name: kafkaTools
ii. fields:

username
password

https://community.appian.com/b/appmarket/posts/transaction-manager

truststorepwd
keystorepwd
privatekeypwd
clientid
clientsecret
tokenurl

5. Give Third-Party Credentials access to KafkaTools plugin

Appian Secure Credentials Store

This plug-in uses a Third-Party Credentials Store to maintain the credentials for authentication with a
Kafka Server. The configuration is available in the Admin Console under Third Party Credentials. The
field names to be created are:

username: username to use with the LoginModule. This is only required when using SASL or
SASL_SSL.
password: password to use with the LoginModule. This is only required when using SASL or
SASL_SSL.
truststorepwd: password of the TrustStore containing the Kafka server certificate. This is only
required when using SSL or SASL_SSL.
keystorepwd: password of the KeyStore containing the client private key to use to authenticate
with the Kafka server. This is only required when using SSL.
privatekeypwd: password of the private key to use to authenticate with the Kafka server. This is
only required when using SSL.
clientid: The client id of the oauth provider to use to authenticate with the Kafka server. This is
only required when using OAUTHBEARER.
clientsecret: The client secret of the oauth provider to use to authenticate with the Kafka server.
This is only required when using OAUTHBEARER.
tokenurl: The token url of the oauth provider use to authenticate with the Kafka server. This is
only required when using OAUTHBEARER.

It is recommended that you mask the value of the passwords. Once the entry is created, the name will
be used as a required input parameter to Kafka Tools Smart Service nodes.

Note: you must have the plug-in installed prior to creating the credentials. You must add the plug-in
to the Plug-Ins List to allow KafkaTools to access the credentials.

If your server does not require authentication, you must still create an entry in the Third Party
Credentials.

Smart Services

The nodes for these Smart Services are available under the Integration Services group and
Connectivity Services subgroup of the Appian Process Modeler.

Publish To Kafka

This Smart Service implements Kafka Producer and sends a single payload to a single Kafka topic per
execution.

Input Parameters

Secure Credentials Store Key: use the name created in the Admin Console under Third Party
Credentials (see above)
Servers: provide a comma-separated list of server name:port values
Topic: provide the name of the kafka server topic
Key: text value of the key the payload should be written to
Partition: integer value of the partition the payload should be written to
Payload: text value of the payload
Security Protocol: provide the value of the security protocol to be used with the Kafka Server
SASL Mechanism: if the security protocol is provided as "SASL_SSL", then this parameter must be
provided, use OAUTHBEARER for oauth auth
TrustStore: if the security protocol is provided as SSL or SASL_SSL, this parameter is an Appian
document containing the TrustStore in JKS format
KeyStore: if the security protocol is provided as SSL, this parameter is an Appian document
containing the KeyStore in JKS format

Output Parameters

success: returns true if smart service completed successfully and false if an exception has
occurred
errorMessage: returns null if smart service completed successfully and the exception message if
an exception has occurred

Known Issues

Currently only supports text based payloads

Consume From Kafka

This Smart Service implements Kafka Consumer and subscribes to one topic on a Kafka server. It saves
the payloads to a database table that is provided in the configuration of the node. The node runs for
a configurable number of minutes and iterates between polling the Kafka server and sleeping.

Input Parameters

Servers: provide a comma-separated list of server name:port values
Datasource Name: provide the value that is specified in the Data Source dropdown in any of the
Data Stores in Designer
TransactionTableName: name of the database table where the Kafka records are saved into. Set
to the default value when using the Transaction Manager to process the Kafka records
Security Protocol: provide the value of the security protocol to be used with the Kafka Server
Secure Credentials Store Key: use the name created in the Admin Console under Third Party
Credentials (see above)
SASL Mechanism: if the security protocol is provided as "SASL_SSL", then this parameter must be
provided
TrustStore: if the security protocol is provided as SSL or SASL_SSL, this parameter is an Appian
document containing the TrustStore in JKS format
KeyStore: if the security protocol is provided as SSL, this parameter is an Appian document
containing the KeyStore in JKS format
Runtime In Minutes: number of minutes that the Smart Service run for. Any value above 58
minutes will be defaulted to 58 minutes as Smart Service nodes timeout after 60 minutes and
result in a process error
Group Id: provide the value for the Group Id to be used to subscribe to the Kafka topic
NumConsumers: provide the number of consumers to use to consume records
Topics: a list of Topics to subscribe to on the Kafka server
Job Type Id: provide the integer of the transaction job type these messages will be assigned to.
Refer to the Transaction Manager documentation for more details
Polling Interval in Ms: provide the number of milliseconds for the Kafka Consumer to poll a topic
per iteration
Sleeping Interval In Ms: provide the number of milliseconds for the thread to sleep between
polling iterations
Session Timeout: provide the number of milliseconds for the session timeout (default value is
30000)
Auto Offset Reset Config: provide the auto offset reset config (default value is latest)
Deserializer Class Name: full name of the class to be used with Kafka Consumer (default is text-
based deserializer)
Message Filter: jsonpath filter used to filter out message before processing in Appian. JsonPath
documentation can be found here. Use this site for testing.

Output Parameters

success: returns true if smart service completed successfully and false if an exception has
occurred
errorMessage: returns null if smart service completed successfully and the exception message if
an exception has occurred

https://goessner.net/articles/JsonPath/
https://jsonpath.herokuapp.com/

Payload Handler Process Models

These models will be configured an assigned through the transaction manager job types. See
documentation for Transaction Manager Transaction Manager

https://community.appian.com/b/appmarket/posts/transaction-manager

