
A solution for searching within the contents of documents. Useful for application that do not require the power
of a full featured search product.

Does not compete with the functionality and power of dedicated products like Apache Solr, Apache
Lucene and Elastic Search.
The relevance of search results and ability to improve them are limited by the given databases
functionality.
Performance and scalability are limited by the amount of text content stored, complexity of search query,
the number of concurrent search requests and available database resources.
Supports fewer file types than a dedicated product.
MySQL takes approximately 1 second for each 10k documents indexed (150k documents = 15s query
time). Refer to each DB vendor or your DBA for how to improve performance.

Extracts the text content of a document and stores in a database table.

Supported file types

DOCX
DOC
MSG
PDF
TXT
XLSX

Input
Data
Type

Required Description

JNDI
Name

Text Yes The datasource JNDI name

Table
Name

Text Yes The database table to store the documents contents into

Document Indexing Services

Limitations

Index Document Contents Smart Service

Node Inputs

Input
Data
Type

Required Description

Document Document Yes The document to index

Max
Characters
To Index

Integer Yes

The maximum number of characters to read from the
document and save into the database. A typical page
contains around 3000 characters. Be aware that most
database column limits are in bytes not characters. As 1
character can require multiple bytes to represent, the
database column must be larger than this value. This value
must be between 1 - 64,000

Pause On
Error

Boolean Yes Whether the node should fail on error or continue

Output Data Type Description

Error Occurred Boolean Returns true if an error has occurred while indexing the document

Error Message Text The error that occurred

The plug-in stores 2 attributes in the database; the Appian document id and its text content.

Use cases for search typically require additional metadata to filter against, such as the document name, last
modified date and document type. These may be stored in the same table or a separate lookup table. It is the
designers responsibility to populate the metadata fields manually as this plug-in will not do it.

If a document has already been indexed, the content field will be updated.

CREATE TABLE `document` (
 `id` int NOT NULL,
 `content` text,
 PRIMARY KEY (`id`),
 FULLTEXT KEY `FT_CONTENT` (`content`)
);

As Appian does not support the MATCH clause, wrap the search query in a stored procedure.

Node Outputs

Table Definition

Example Search Query

SELECT
 id,
 LEFT(content, 50) AS snippet
FROM
 new_table
WHERE
 MATCH (content) AGAINST ('ridiculous penguin shaped horse' IN BOOLEAN MODE)
LIMIT
 10;

Certain documents are very inefficient to process with Apache Tika. This project requires each document type
contains an explicit test case. I recommend validating against a large volume of real documents before
releasing support for a new document type. The risk of causing stability issues in Appian from poorly
handled document types is high so test thoroughly.

1. Uncomment the desired document type in tika-config.xml

2. Add a test document with 1 million bytes of text content to src/test/resources/docs/large

3. Run unit tests (see development build steps)

To create a plug-in jar for testing, run the following Maven command:

mvn clean package

The jar can be found in /target

To create a new public release, run the following Maven commands:

mvn release:clean

mvn release:prepare -DautoVersionSubmodules=true -DpushChanges=false

git push origin master --tags

The release jar can be found in /target

Testing and Release

Adding Document Types

Development Build

Release Build

