
Adobe Connected System for Appian
V2.0.0

Appian Corporation

Version 2.0.0

Table of Contents

Overview 3

Adobe PDF Services 4

Connected System Configuration 4

Combine PDF 6

Compress PDF 8

Create PDF 10

Delete PDF Pages 11

Export PDF 13

Extract PDF Content 14

Generate Document 17

HTML To PDF 19

Insert Pages to PDF 20

Linearize PDF 23

OCR PDF 24

Get PDF Properties 26

PDF to Images 27

Protect PDF 29

Remove PDF Protection 33

Reorder PDF Pages 34

Replace PDF Pages 36

Rotate PDF Pages 39

Split PDF 41

Usage Limits 44

Adobe Sign 45

Connected System Configuration 45

Create Agreement 49

Get Agreement 52

List Agreements 53

Get Signing URL of Current Signer 54

Get Combined Document 55

Upload File to Library 56

Reject Agreement 57

Usage Limits 58

2

Overview

In the modern day, most businesses store the overwhelming majority of their documents
digitally for a wide variety of different purposes, from invoices to tax forms. However, digital
documentation storage provides many great advantages, they can be difficult to manage,
update, and access. Adobe has been a key solution for mitigating these issues with their widely
recognized products, and now with the Adobe Connected System, Appian users can utilize
Adobe’s modern, cloud-based PDF capabilities.

The key utility provided by using the Adobe PDF Services API is document generation.
This powerful feature allows users to quickly and easily generate and manage business critical
documents. For example, a salesman could create a custom, branded request template for his
services that contains static information about his company in addition to dynamic fields that
could be filled out by his customers.

Another unique feature users can take advantage of is PDF extraction, a cloud-based
web service that uses Adobe’s Sensei AI technology to automatically extract content and
structural information from PDF documents – native or scanned – and outputs it in a structured
JSON format. The service extracts text, complex tables, and figures.

Other practical features include PDF compression, conversion, linearization, and OCR. All
these features can be combined to become a critical part of making your workflow more
efficient.

For more information, please visit PDF features | Adobe Acrobat.

3

https://www.adobe.com/acrobat/features.html

Adobe PDF Services

Connected System Configuration

The Adobe Connected System requires the following credentials: Client ID, Client Secret.

● Visit this page to create the credentials for Adobe PDF Services Connected System
configuration.

Important Note: You will be asked to login into your Adobe developer account or to
create a new account if you don’t have one.

● Provide a name for your credentials and click on Create Credentials and a zip file will be
downloaded. The downloaded zip file contains your API credentials. Please store your API
credentials securely. You can also access a copy on the dashboard of your Adobe
Developer Console.

● Extract the zip file and it will contain a json file: pdfservices-api-credentials.json
with the necessary credentials. Copy the client_id and client_secret from the json
file and paste them in the connected system configuration.

4

https://documentservices.adobe.com/dc-integration-creation-app-cdn/main.html?api=pdf-services-api

● Click on Test Connection to verify the entered credentials are correct.

Please find pricing information here for the Adobe PDF services API.

5

https://developer.adobe.com/document-services/pricing/main/

Unset

Combine PDF
Combines multiple PDF files (up to 20 files) into a single PDF file by specifying which pages of
the source files to combine. By default, all the pages of source files are considered if explicit
PageRanges are not specified for each file.

Inputs:
Documents to combine (List of Dictionary) - Required

Example:

{
{

document: todocument(documentId)/*Required*/
},
{

document: todocument(documentId)/*Required*/,
pageRanges:{ /*Optional*/

{
start: integer /*Required*/,

6

Unset

end: integer /*Required*/,
},
{

start: integer /*Required*/,
end: integer /*Required*/,

}
}

},
{

document: todocument(documentId)/*Required*/,
pageRanges: {}/*Optional*/

}
}

Description: Each dictionary requires a document. The pageRanges is optional; if provided the
start and end inside pageRanges are required. Provide the value for the document using the
todocument() function. In pageRanges to pass only a single page, provide the start and end
value as the same (ex. start: 3, end: 3. Page numbers are indexed from 1 to N.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

7

Compress PDF
Reduces the size of PDF files by compressing to smaller sizes for lower bandwidth viewing,
downloading, and sharing. This integration supports multiple compression levels to retain the
quality of images and graphics.

Inputs:
Input document (Document) - Required

Provide the input document.

Compression Level (Text) - Required
Specify the level of compression to apply to the PDF.

Valid values: LOW, MEDIUM, HIGH.

LOW: Reduces resolution of the coloured and grayscale images above 250 dpi to 200 dpi. This
option uses JP2K high quality compression.

MEDIUM: Reduces resolution of the coloured and grayscale images above 200 dpi to 144 dpi.
This option uses JP2K medium quality compression.

HIGH: Reduces resolution of the coloured and grayscale images above 100 dpi to 72 dpi. This
option uses JPEG medium quality compression. Output PDF will not contain hidden layers,
document structure, metadata, javascript, user properties and print settings.

8

Unset

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

9

Unset

Create PDF
Creates PDFs from a variety of formats such as Microsoft Word, PowerPoint, and Excel; as well
as text, image, Zip, and URL.

Support for HTML to PDF, DOC to PDF, DOCX to PDF, PPT to PDF, PPTX to PDF, XLS to PDF, XLSX
to PDF, TXT to PDF, RTF to PDF, BMP to PDF, JPEG to PDF, GIF to PDF, TIFF to PDF, PNG to PDF.

Inputs:

Input document (Document) - Required

Provide the input document.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

10

Unset

Delete PDF Pages
Deletes one or more pages from a document. The delete pages operation selectively removes
pages from a PDF file.

Inputs:
Input document (Document) - Required

Provide the input document.

Page Ranges: (List of Dictionary) - Required

Page ranges of the PDF file. Each dictionary confirms the start and end.
Example :

{
{
start: integer /*Required*/,
end: integer /*Required*/
}
}

In pageRanges to pass only a single page, provide the start and end value as the same.

11

Unset

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

12

Export PDF
Exports a source PDF file into a doc, docx, pptx, rtf, or xlsx file.

Inputs:

Input document (Document) - Required

Provide the input document.

Target Format (Text) - Required

Specifies the output file format. Valid values: doc, docx, pptx, xlsx, rtf.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be
saved.

13

Unset

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

12

Extract PDF Content
Extracts PDF Content, tables content, character bounds, styling info and tables or figures from a
PDF document.

14

Unset

Inputs:

Input document (Document) - Required

Description: Provide the input document.

Elements to Extract (List of Text) - Required

Description: Provide the list of elements to extract from the PDF document. Possible values
are text and tables.

Example:

{"text","tables"}

Get character bounds (Boolean) - Optional

Extract bounding boxes for characters present in text blocks(paragraphs, list, headings).
Default: false

Include Styling (Boolean) - Optional

Description: Determines whether to to get styling information for each text element(Bold /
Italics / Superscript etc) . Default: false

Table Output Format (Text) - Optional
15

Unset

Unset

Description: Specifies the format of table contents output. Possible values are csv and xlsx.
Default: xlsx.

Renditions to Extract (List of Text) - Optional

Description: Determines whether to get figure renditions as PNGs and table renditions in PNG
and XLSX/CSVformat. Possible values are figures and tables.

Example:

{“figures”, “tables”}.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

Please click here for the details on the output.

16

https://developer.adobe.com/document-services/docs/overview/pdf-services-api/howtos/extract-pdf/#structured-information-output-format

Generate Document

Merges Word based templates with JSON data to create Word and PDF documents. By using the
a!toJson function, user can input JSON data into Word based templates to create dynamic
documents.

We can use this to generate documents dynamically from Appian Records using the record data.

Inputs:
Document template: (Document) - Required

Description: Provide the template document file with the template tags.

Json data for merge (JSON) - Required

Description: Provide the corresponding JSON data to merge in the template document. Note:
Please use toJson() function to provide the json input as shown in the screenshot below.

Please visit this page to learn more about template tags and the json data to merge and how to
use them.

Output format (Text) - Optional

Description: Specifies the output format of the generated document. Possible values are PDF
and docx. Default: PDF

17

Unset

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

18

Unset

HTML To PDF
Converts a Html file with internal styles or URL to a PDF.

Inputs:

Input Type (Text) - Required.

Description: Select the type of input html to convert. Valid values: fileUpload, inputUrl.
Input document (Document) - Required
Description: Provide the input html document.

URL (Text) - Required

Description: Provide the URL that needs to be converted to PDF.

Include header and footer: (Boolean) - Optional

Description: Determine whether to add default headers and footers to the output pages. The
default header includes a short date and the contents of the document title. The default footer
includes a file name and a page n/m reference. Default: false.

Page Width (Decimal) - Optional

Description: The width (in inches) of the output paper size. Default : 11. 16
Page Height (Decimal) - Optional

Description: The height (in inches) of the output paper size.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

19

Unset

Insert Pages to PDF
Inserts additional pages from different PDFs into an existing PDF.

Input Document (Document) - Required
Description: Provide the input document to insert the pages into.

Documents to Insert (List of Dictionary) - Required

Example:

{

{

document: todocument(documentId)/*Required*/

position: integer /*Required*/

},

{

20

document: todocument(documentId)/*Required*/,

position: integer /*Required*/,

pageRanges: /*Optional*/{

{

start: integer /*Required*/,

end: integer /*Required*/,

},

{

start: integer /*Required*/,

end: integer /*Required*/,

}

}

},

{

document: todocument(documentId)/*Required*/,

position: integer /*Required*/,

pageRanges: {}/*Optional*/

}

}

21

Unset

Description: Each dictionary requires a document and a position at where this document
needs to be inserted in the input document. The pageRanges is optional, if provided the start
and end inside pageRanges are required. Provide the value for the document using the
todocument() function. In pageRanges to pass only a single page, provide the start and end
value as the same.Page numbers are indexed from 1 to N.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

22

Unset

Linearize PDF

Optimizes PDFs for quick viewing on the web, especially for mobile clients. Linearization allows
your end users to view large PDF documents incrementally so that they can view pages much
faster in lower bandwidth conditions.

Inputs:
Input document (Document) - Required

Provide the input document to linearize it.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

23

OCR PDF
Uses built-in optical character recognition (OCR) to convert images to text and enable fully text
searchable documents for archiving and creation of searchable indexes. OCR converts images to
text so that you and your users can fully interact with the PDF file. After performing OCR, the
PDF may be fully editable and searchable.

Inputs:
Input document (Document) - Required
Provide the input document.

OCR Language (Text) - Optional

Description: Specifies the input language to be used for OCR. Default: en-US. 20
OCR Type (Text) - Optional

Description: Specifies OCR Type. Valid Values: "searchable_image" "searchable_image_exact".
Default: "searchable_image".

Searchable Image: This type ensures that text is searchable and selectable, but modifies the
original image during the cleanup process (for example, deskews it) before placing an invisible
text layer over it. This type removes unwanted artifacts and may result in a more readable
document in some scenarios.

Searchable Image Exact: This type overlays a searchable text layer over the original image,
but in this case, the original image is unchanged. This type produces maximum fidelity to the
original image.

24

Unset

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

25

Get PDF Properties
Gets the metadata properties of a PDF. When used, the metadata including page count, PDF
version, file size, compliance levels, font info, permissions and more are provided.

Inputs:

Input document (Document) - Required
Provide the input document.

Include Page level Properties (Boolean) - Optional

Provide true to get page level properties of the PDF. Default : false.

Output : (Dictionary) - It contains the information about the pages, document and security in a
dictionary format.

26

PDF to Images
Converts a PDF file into supported image formats(jpeg and png).

Input document (Document) - Required
Provide the input document.

Target Image Format (Text) - Required

Description: Target exported image File Format. Valid values : png, jpeg.
27

Unset

Unset

Output Type (Text) - Required

Description: Specifies the output type of the response. Valid values: listOfPageImages,
zipOfPageImages.

If it is set to zipOfPageImages then the response will be provided as a zip response, otherwise if
set as listOfPageImages the response will be provided as a list of images as specified in the
targetFormat.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be
saved.

Output (List of Images) - Dictionary

{
success: true,
documents: { (List of Dictionary)
{
success:true,
document : documentId
}
}
}

Output (Zip)- Dictionary

{
success: true,
document: documentId - Output file name
}

28

Protect PDF

Use this integration to secure a PDF file with a password to encrypt the document. Set an owner
password and restrictions on certain features like printing, editing and copying in the PDF
document to prevent end users from modifying it. You can specify the type of content to be
encrypted along with your specified encryption algorithm.

29

30

Inputs:

Input document (Document) - Required

Description: Provide the input document to linearize it.

Password Type (Text) - Required

Description: Provide the type of password to use. Valid values: userPassword, ownerPassword.

User Password: Password used to open an encrypted PDF document. When this property is
included and non-empty, the use of a password is necessary to open or view the document. If
this password is empty or omitted the document can be opened automatically by conforming
PDF viewers.

Owner Password: Password used to control permissions (does not add password to view the
PDF) in a PDF document. Conforming PDF viewers require this password to change the
permissions. This password can also be used to open/view the PDF document.

User Password (Text) - Required (or) Owner Password (Text) - Required
Description: Provide the password value to protect with.
Encryption Algorithm (Text) - Required

Description: Sets the encryption algorithm.Valid values: AES_128, AES_256. For AES_128
encryption, the password supports LATIN-I characters only. For AES_256 encryption, the
password supports the Unicode character set.

Content to Encrypt: (Text) - Optional

Description: Sets the type of content to be encrypted. Valid values: ALL_CONTENT,
ALL_CONTENT_EXCEPT_METADATA. Default: ALL_CONTENT.

Permissions (List of Text) - Optional - Available only when type is Owner Password.

Description: Permissions to allow printing, editing and content copying in the PDF document.
Valid values: PRINT_LOW_QUALITY, PRINT_HIGH_QUALITY, EDIT_CONTENT,
EDIT_FILL_AND_SIGN_FORM_FIELDS, EDIT_ANNOTATIONS, EDIT_DOCUMENT_ASSEMBLY,
COPY_CONTENT. Default:{}

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required
31

Unset

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

32

Remove PDF Protection
Use this integration to remove security configurations from a PDF document. If the PDF is
protected by an owner password then the owner password is required to remove security
otherwise user password is required.

Inputs:
Input document (Document) - Required

Description: Provide the input document with password protected.

Password (Text) - Required

Description: Password required for removing security/permissions from the PDF document.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be
saved.

33

Unset

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

Reorder PDF Pages
Reorders pages in a PDF by moving pages from one position to another.

Inputs:

Input document (Document) - Required

Provide the input document.

Page Ranges: (List of Dictionary) - Required

Page ranges of the PDF file. Each dictionary confirms the start and end.

34

Unset

Unset

Example :

{
{
start: integer /*Required*/,
end: integer /*Required*/
}
}

In pageRanges to pass only a single page, provide the start and end value as the same. 29
Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

35

Unset

Replace PDF Pages
Replaces pages in a PDF with pages from other PDF files.

Input:
Input Document (Document) - Required
Description: Provide the input document to replace the pages.

Documents to Insert (List of Dictionary) - Required

Example:

{

{

document: todocument(documentId)/*Required*/

position: integer /*Required*/

},

{

36

document: todocument(documentId)/*Required*/,

position: integer /*Required*/,

pageRanges: /*Optional*/{

{

start: integer /*Required*/,

end: integer /*Required*/,

},

{

start: integer /*Required*/,

end: integer /*Required*/,

}

}

},

{

document: todocument(documentId)/*Required*/,

position: integer /*Required*/,

pageRanges: {}/*Optional*/

}

}

Description: Each dictionary requires a document and a position at where the document needs
to be replaced in the input document section. The pageRanges is optional, however, if provided
the start and end inside pageRanges are required. Provide the value for the document using the
todocument() function. In pageRanges to pass only a single page, provide the start and end

37

Unset

value as the same. Page numbers are indexed from 1 to N.

Output File Name (Text) - Required
Description: Provide the name of the output file.

Save to Folder (Folder) - Required
Description: Provide the target save to folder where the output file needs to be saved.
Output - Dictionary

{
success: true,
document: documentId - Output file name
}

38

Unset

Rotate PDF Pages

Selectively rotates pages in a PDF document. For example, you can change portrait view to
landscape view of certain pages from a PDF document.

Inputs:

Input document (Document) - Required
Provide the input document.

Page Actions (List of Dictionary) - Required

A list of page actions to be performed on an input PDF document in the given order. Example

{
{
angle:integer /*Required. Valid values : 90,180,270*/, pageRanges:/*Required*/ {
{
start:integer /*Required*/,
end:integer /*Required*/
}
}
},
{

39

Unset

angle:integer /*Required. Valid values : 90,180,270*/, pageRanges: /*Required*/{
{
start:integer /*Required*/,
end:integer /*Required*/
}
}
}
}

Description:
angle (Integer) - Required: It specifies the clockwise rotation angle relative to the starting
orientation of the page. e.g. if a page is already rotated 90 degrees (landscape), specifying a
rotation of 90 degrees will rotate it a further 90 degrees. The valid rotation angles are: 90, 180,
270.
pageRanges (List of dictionary) - Required: Each dictionary contains start and end values. To
pass only a single page, provide the start and end value as the same.Page numbers are indexed
from 1 to N.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

40

Split PDF

Splits a PDF document into multiple smaller documents by simply specifying either the number
of files, pages per file, or page ranges.

41

Inputs:

Input document (Document) - Required
Provide the input document.

Split Option (Text) - Required.
Provide an option to split the PDF document. Valid values : fileCount, pageCount, pageRanges.

42

Unset

Unset

fileCount : The number of documents to split the input PDF file into.
(Integer) - Required

pageCount : The maximum number of pages each of the output files can have.
(Integer) - Required

pageRanges: (List of dictionary) - Required. Each dictionary contains start and end values.
To pass only a single page, provide the start and end value as the same.Page numbers are
indexed from 1 to N.
Example:

{
{
start: integer/*Required*/,
end: integer/*Required*/
},
{
start: integer/*Required*/, end: integer/*Required*/ }
}

Output File Name (Text) - Required

Description: Provide the name of the output file.

Save to Folder (Folder) - Required

Description: Provide the target save to the folder where the output file needs to be
saved. Output - Dictionary

{
success: true,
documents: { (List of Dictionary)
{
success:true,
document : documentId
}
}
}

43

Important Note: If a set of PDF pages cannot be evenly separated in files then this
integration will split them by the requested number of pages and put remaining pages into a
separate file.

Usage Limits

Please refer here for the usage limits of the Adobe PDF Services API.

44

https://developer.adobe.com/document-services/docs/overview/limits/#usage-limits

Adobe Sign

Overview

Adobe Sign API is a great way to enhance how you manage signed agreements. You can easily
integrate with Sign API which provides a reliable, easy, and quick way to upload and manage
documents, send documents for signing, send reminders to signatories, and manage
e-signatures.

Connected System Configuration

The Adobe Sign Connected System requires an Integration Key for its authentication.

45

1. To get the Integration Key, you need an Adobe Developer/Enterprise account.
2. Click here to create a free Adobe Sign Developer Account or login to your
account if you already have one.
3. After account creation, please login to your Adobe Account. Navigate to API > Acrobat

Sign API > API Information and click on Integration Key link.

4. Provide a name for your Integration and select the necessary scopes and select Save.
Please make sure the following scopes are selected:
agreement_read,agreement_write,agreement_sign,widget_write,library_write.

46

https://www.adobe.com/sign/developer-form.html

Now you can see the List of Applications in your account along with the permissions.

5. Select the Application that you have created.

47

6. You will see the option to get the Integration Key. Click on Integration Key and you can
get the integration Key for your application.

7. Provide the Integration Key in the Connected System configuration.

48

Create Agreement
Creates an agreement. Sends it out for signatures, and returns the agreementID.

Inputs

Agreement Name (Text) - Required
Description: Provide a name for the Sign Agreement.

Reminders (Text) - Optional
Description: Set the reminder frequency to send reminders until the agreement is signed.
Default: null.
Valid values : DAILY_UNTIL_SIGNED, WEEKDAILY_UNTIL_SIGNED,
EVERY_THIRD_DAY_UNTIL_SIGNED, EVERY_FIFTH_DAY_UNTIL_SIGNED,
WEEKLY_UNTIL_SIGNED, ONCE.

Participants Info (List of Dictionary) - Required
Description: Provide the participants information for the agreement.

Role (Text) Required: Determines the role of the members in the participant set. Valid
values : ‘SIGNER', 'APPROVER' , 'ACCEPTOR' , 'CERTIFIED_RECIPIENT' , 'FORM_FILLER' ,
'DELEGATE_TO_SIGNER' , 'DELEGATE_TO_APPROVER' , 'DELEGATE_TO_ACCEPTOR' ,
'DELEGATE_TO_CERTIFIED_RECIPIENT' , 'DELEGATE_TO_FORM_FILLER' .

49

Approver: Recipients marked as approvers review and approve the document but they are not
required to sign it. They may be required to enter data into fields.

Delegator: Recipients marked as delegators may review the document but can’t sign, approve
or accept the document or acknowledge its receipt. They need to forward the document to
another user who may take the appropriate action.

Acceptor: Recipients marked as acceptors are required to accept the document. They may be
required to enter data into fields.

Certified Recipient: Recipients marked as certified recipients are required to view
and acknowledge the receipt of the document.

Form Filler: Recipients marked as form fillers are required to enter data into the form fields
and submit the document.

Please make sure to enable the roles in the Adobe Sign Account settings. By default, only
SIGNER and APPROVER roles will be available.

Order (Integer) Required: Determines the order of signing for the participant set. Order is
indexed from 1.

50

Unset

Unset

Unset

Members Info (List of Dictionary) Required : Each dictionary confirms to the following

{
email: (Text) - Required
password: (Text) - Optional - If a value is given, the member has to provide this password
before signing the document.
}

Example:

{
{
role: "text"/*(Required)*/,
order: "integer"/*(Required)*/,
membersInfo: {
{
email: "example@email.com"/*(Required)*/,
password: "text"/*(Optional) If provided the user must use this password to authenticate
before signing the document.*/ },
{
email: "example@email.com"/*(Required)*/,
password: "text"/* (Optional) If provided the user must use this password to
authenticate before signing the document.*/
}
}
}
}

Output: (Dictionary)

{
success: true,
id: agreementID
}

51

Unset

Get Agreement
Gets an agreement with its details in the form of Dictionary for the given AgreementID

Input:
Agreement ID: (Text) Required
Provide the ID of the agreement to get its details.

Output: (Dictionary)

{
success: true,
result: Dictionary of agreement details.
}

52

Unset

List Agreements
Lists all the agreements along with its details.

Input:
Cursor: (Text) Optional
Provide the value of the 'nextCursor' property inside the dictionary 'page' from the previous
response to fetch the next page results. If not provided, it returns only the first page.

Page Size: (Integer) Optional
Provide the number of items to retrieve in the response page.

Output: (Dictionary)

{
success: true,
result: Dictionary of userAgreementList
}

53

Unset

Get Signing URL of Current Signer
Retrieves the URL for the e-sign page for the current signer(s) of an agreement.

Input:
Agreement ID: (Text) Required
Provide the ID of the agreement to get the signing URL for the current signer(s).

Output: (Dictionary)

{
success : true,
result: Dictionary of signingURLSetInfos
}

54

Unset

Get Combined Document
Retrieves a single combined PDF document for the documents associated with an agreement
and stores it in Appian in the given folder.

Input:
Agreement ID: (Text) Required
Provide the ID of the agreement to get its details.

Output File Name (Text) - Required

Description: Provide the name of the output file.

Target Folder(Folder) - Required

Description: Provide the target folder where the combined document needs to be saved.

Output - Dictionary

{
success: true,
document: documentId - Output file name
}

55

Unset

Upload File to Library
Uploads the file to Adobe Sign Library for later use.

Inputs:
Upload File (Document) - Required
Description: Provide the document that needs to be uploaded to the Adobe Sign Library.

Name (Text) - Required
Description: Provide a name for the Library Document.

Output: (Dictionary)

{
success: true,
id: libraryDocumentID
}

56

Unset

Reject Agreement

Rejects the agreement for a participant.

Input:
Agreement ID: (Text) Required
Provide the ID of the agreement that needs to be rejected.

Participant Set ID (Text) - Required
Provide the ID of the member’s participant set.
You can get the participant set ID from the response of Get Agreement.

Participant ID (Text) - Required
Provide the ID of the participant.
You can get the participant ID from the response of Get Agreement.

Comment: (Text) - Required
Provide a comment/reason for rejecting the agreement for the participant.

Output: (Dictionary)

{ success: true }

57

Usage Limits

For more details please visit the Adobe Sign usage page here.

58

https://helpx.adobe.com/sign/using/transaction-limits.html

