@OpenAI

Connected System Plugin for Appian

Julian Grunauer
Technology Strategy Engineer

Version 1.2.2

appian

Introduction

The introduction of ChatGPT has shaken the world with its revolutionary approach to AI and
natural language processing. It is evident that as technology companies move forward
integrating AI into their workflow is critical. Appian itself is integrating Al in a variety of ways;
from utilizing it as an inspiration tool to being a developer aid.

The OpenAlI Connected System allows users to give prompts and receive Al generated
responses, whether that be images (DALLE-2), audio (Whisper), or text (ChatGPT). These
responses can then be edited, updated, expanded upon, or deleted by the Al model as desired.
Users can also fine-tune (custom train) a model based on Record data.

Privacy Policy

All information passed through Al tools will be processed and may remain with the
organizations that develop those tools. Please exercise caution with what information is
disclosed to the Al tool for this reason.

Further Information
Please see the below resources from OpenAl for any legal questions and concerns.

Privacy Policy
Terms of Use

Sharing & Publication Policy
Coordinated Vulnerability Disclosure Policy

W=

https://openai.com/privacy/
https://openai.com/terms/
https://openai.com/api/policies/sharing-publication/
https://openai.com/security/disclosure/

Integration

Chat Completion (ChatGPT)

Create Completion

Create Completion Edit
Create DALLE Image
Transcribe Audio

Create Translation
Edit/Extend DALLE Image
Create Variation of Image

Create Vector Embedding

Upload a document
Return OpenAlI Files
Delete OpenAl File

Return OpenAl File Information

Return OpenAlI File Contents

Create Fine
List Fine
Cancel Fine
Retrieve Fine

Get Fine

List Available Models

Delete Fine

Retrieve Model Instance Information

Content Policy Violation

Integration Overview

Function
Given a chat conversation, the model will return a chat completion response.

Creates a completion for the provided prompt and parameters. Use Function Calling
to have GPT select a function to call and provide arguments to call that function.
(Soon to be deprecated, use chat completions instead)

Given a prompt and an instruction, the model will return an edited version of the
prompt. (Soon to be deprecated, use chat completions intead)

Given a prompt and/or an input image, the model will generate a new image.
Transcribes audio into the input language.

Translates audio into English.

Creates an edited or extended image given an original image and a prompt.
Creates a variation of a given image

Creates an embedding vector representing the input text.

Upload a file that contains document(s) to be used across various endpoints/features.
Currently, the size of all the files uploaded by one organization can be up to 1 GB.
Please contact us if you need to increase the storage limit.

Returns a list of files that belong to the user's organization.

Delete a file

Returns information about a specific file.
Returns the contents of the specified file

Tuning Job - Creates a job that fine-tunes a specified model from a given dataset.
Response includes details of the enqueued job including job status and the name of
the fine-tuned models once complete.

Tuning Jobs - List your organization's fine-tuning jobs.

Tuning Job - Immediately cancel a fine-tune job.

Tune Job Info - Gets info about the fine-tune job.

Tuning Job Status - Get fine-grained status updates for a fine-tune job.

Lists the currently available models and provides basic information about each one
such as the owner and availability.

Tuning Model - Delete a fine-tuned model. You must have the Owner role in your
organization.

Retrieves a model instance, providing basic information about the model such as the
owner and permissioning.

Classifies if text violates OpenAl's Content Policy

Creates a JSON Lines File from Appian data. This is the file format OpenAl expects to
Create JSON Lines File receive for fine-tuning jobs. Use this generated file to upload and fine-tune a model.

Basic ChatGPT Chatting Interaction

This will walk you through basic chatting functionality with ChatGPT using the /chat/completions
endpoint.

1.
2.

H W

Set up OpenAlI account and OpenAl connected system (instructions below)
Select whether the integration reads or writes data from the initial dropdown.

a. (Reads Data) — Queries data from the API and allows the result to be stored as a
local variable.

b. (Modifies Data) — Mutates data from the API and requires an onSuccess and
onError fields to handle the results of the call. Modifying data requires the user
to interact with Appian in some way to trigger the request.

Select “creates a completion for the chat message”
Fill out the required fields

a. Itis highly recommended that you use the “Specify values for each input” UI to
fill in your field values and “Define all values with a single expression” to gain
insight into the descriptions of all the available parameters.

For a basic chat interaction, the only parameters required are “model” and "messages”
with at least one {role: “*, content: “"} object. The “Generate Expression” button will
allow you to introspect all possible fields that you can fill out, but these are the only
required fields for this interaction. For example, messages can be filled out as follows. As
the interaction with gpt grows, pass in more of these objects, listing the role as assistant

to record GPT's responses.

Edit Expression

EEEMCTQR X T D (2]
1v{

ZV {

3v . "user", /*Example: (Require

4v : "What is Appian?",

5 }

6 1}

Place cursor on function, rule, or constant to display help

o |

ChatGPT Function Calling

Function calling is a way to allow GPT to select relevant functions to call to ground its answer in
user data. The developer lists descriptions of functions along with a user query and GPT will be
able to respond with the correct function to call and the arguments to call it with. The developer
then can call this function and pass the function’s response along with the original user’s query
so that GPT can answer the query based on the data provided. Read about function calling here
and here before continuing.

1. Follow the instructions for “Basic GPT Interaction” above

2. Following the example provided from the OpenAl documentation, format your initial
function parameter for the initial function calling query as follows. Make sure to wrap
“parameters” field in altoJson({})

Edit Expression

L EEEMTQRXNFHATDE e

3v : "user", /*Example: (Required) The role of the author of this
4y : "What's the weather in DC?F /*Example: (Required) The conte

Place cursor on function, rule, or constant to display help

Clear expression and reset value

CANCEL

Unset

name: "get_current_weather"
/*Example: (Required) The name of the function to be called. Must be a-z,
A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.%*/

https://openai.com/blog/function-calling-and-other-api-updates
https://platform.openai.com/docs/guides/gpt/function-calling

description: "Get the current weather in a given location",
/*Example: A description of what the function does, used by the model to
choose when and how to call the function.*/
parameters: a!toJson(
{
type: "object",
properties: {
location: {
type: "string",
description: "The city and state, e.g. San Francisco, CA"

b
unit: {
type: "string",
enum: { "celsius", "fahrenheit" }
}
H
required: { "location" }

}

)/*Example: (Required) The value for 'parameters' is dynamic and must be
wrapped in a!toJson. Example parameters value: a!toJson({ type: "object",
properties: { location: { type: "string", description: "The city and state,
e.g. San Francisco, CA" }, unit: { type: "string", enum: { "celsius",
“fahrenheit" } } }, required: { "location" } }). The parameters the functions
accepts, described as a JSON Schema object. See the
[guide] (/docs/guides/gpt/function-calling) for examples, and the [JSON Schema
reference] (https://json-schema.org/understanding-json-schema/) for
documentation about the format.To describe a function that accepts no
parameters, provide the value “{"type": "object", "properties": {}} .*/

}
}

a. The response will include the function it chose to call (in other examples you can
list more than one function) along with the arguments to call it. With this
response, call the function of choice (in this example, it would most likely be
another integration to get location weather, but this could also be used to call
other SAIL functions)

4. After receiving the response from the called function, you can pass this information back
to GPT to answer the user’s initial query

a. The functions parameter will remain the same, while the messages parameter
will look like:

Unset

role: "user",

content: "What is the weather like in Boston?"
H
{

role: "assistant",
content: null,
function_call: {
name: "get_current_weather"
arguments: al!toJson({ location: "Boston, MA" })
}
o
{

role: "function",

name: "get_current_weather"

content: {
temperature: "22",
unit: "celsius",
description: "Sunny"

}

}
}
}

b. Optionally use the “function_call” parameter which controls how the model
responds to function calls. "none" means the model does not call a function, and
responds to the end-user. "auto" means the model can pick between an end-user
or calling a function. Specifying a particular function via *“{"name":\
"my_function"}" forces the model to call that function. "none" is the default
when no functions are present. "auto" is the default if functions are present.

5. The final response is GPT responding to the user’s initial query using the data provided
from the function.

OpenAl Sample App Setup

This will walk you through importing the sample application and loading in a SQL file into the
cloud database. The sample app has not been updated to reflect the switch to the
/chat/completions endpoint. Make sure to use /chat/completions when building your own
application.

1. Import the OpenAIDemoApp.zip file into your Appian environment.

Import

I # Extend your applications by importing solutions and utiities. Browse the AppMarket

When inspecting the package for missing precedents, no items are added or modified. The
deployments view will be updated when import is completed.
Package (2IP) @ *
@ OpenAl Demo App
ZIP -5.01 MB

| Include related import customization file

CANCEL [NZa | iMPORT

2. Click the waffle menu in the top right corner and open the “Cloud Database”

,& Appian Designer Q h object O appian

Admin Console

Cloud Database

Let's get started
Make a new application from scratch, or get a head start by importing an application or + Newapplication 3] import SRS .
package
About Appian i
Help j
i
RECENT APPLICATIONS Tempo
. Adventure Works developers
©OpenAl Demo App (ODA) Adobe Sign (AS) H Adventure Works (AW) Integrations Overview
0 o o Explore learning paths and get certified
Success
You edited moments ago You opened yesterday You edited in the past week Review development best practices
3% Support
Request help with the product
ALL APPLICATIONS
8 Documentation
View tutorials, patterns, recipes, and reference content
pplications Q st Moa LAST MODIFIED ON | Any - Any ~ || With Packages = AppMarket
Browse solutions, plugins, and utilties
EXPORT ~ SECURITY ~PROPERTIES DELETE &
Name. Description Last Modified © 1
OpenAl Demo App (ODA) 2/1/2023 3:32 PM by Admin User
‘Adobe Sign (AS) 1/30/2023 3:00 PM by Admin User
Adventure Works (AW) 1/29/2023 10:56 PM by Admin User Top 4 Pitfalls of Low-Code
Application Development
Rethink your approach
g 224 Release Notes
View features for this release
+ About This Environment
1 View system information
>

3. Click "Import” and load the attached SQL file

2Ele0)%6

Recent|| Favoritss . Search Query =} Export [Import J° Operations = Privileges < Routines Events 2 Triggers &3 Designer
~
o Importing into the database "ds2"
~ . dst
—— ds2 File to import:
l* _| Tables
E——— File may be compressed (gzip, bzip2, zip) or uncompressed.
= A compressed file's name must end in .[format].[compression]. Example: .sql.zip
L i New Browse your computer: (Max: 2,048KiB)
- Address Choose File ‘ODA_COMMENT.sql
- AddressType
~ 1+ BusinessEntity You may also drag and drop file on any page.

- » BusinessEntityAddress_S

Character set of the file:
-+ BusinessEntityContact_Si

- ContactType utt-8 v
~} CountryRegion

-4 CreditCard

~ ¥ Currency Partial import:

~J CurrencyRate

~ » Customer @D Allow the interruption of an import in case the script detects it is close to the PHP timeout limit.

~ Department This might be a good way to import large files, however it can break transactions.

- Employee

Skip this number of queries (for SQL) starting from the first one:
-+ EmployeeDepartmentHist

- EmployeePayHistory_2 0
¥ Location

¥ Person

\ ¥ Personz Other options
-1+ PersonCreditCard_2
-1+ Product

-+ ProductCategory

@ Enable foreign key checks

- ProductCostHistory_2 Format

- ProductDescription

~ ¥ Productinventory_2 saL v
- ProductModel

-~ Views

~ . information_schema Format-specific options:
~ | Rpa

SQL compatibility mode:

NONE v

@D Do not use AUTO_INCREMENT for zero values

m Console

SElo @6
Recont|| Favortes ¥ structure L] SQL 4 Search Query =} Export (i Import J* Operations =7 Privileges 4 Routines (Events 3 Triggers 3 Designer
w
—— Import has been successtully finished, 15 queries executed. (ODA_COMMENT.sq)
ppianRpdo
AppianRtdo
dst / MySQL returned an empty result set (.e. zero rows). (Query took 0.0001 seconds.)
ds2
- -- phpMyAdmin SQL Dump -- version 5.2.0 -- https://www.phpmyadmin.net/ -- -- Host: 127.0.0.1:3306 -- Generation Time: Feb 01, 2023 at 03:26 PM -- Server
J version: 10.6.11-MariaDB -- PHP Version: 7.4.33 SET SQL MODE = "NO_AUTO_VALUE ON_ZERO";
Type o fiter tese, Ente | X
U [Edit iniine] [Edit] [Create PHP code]
- New A
 MySQL returned an empty result set i.e. zero rows). (Query took 0.0001 seconds.)
-+ Address
~ b AddressType START TRANSACTION;
- BusinessEnti
)J: - Em‘m o [Editinine][Edit] [Create PHP code]
-V Business ress_
- BusinessEntityContact_Si
T s ~ MySQL returned an empty result set i.e. zero rows). (Query took 0.0001 seconds.)
~# CountryRegion SET time_zone = "+00:00";
~ b CreditGard
e [Edit inline][Edit] [Create PHP code]
- CurrencyRate
16 Customer # MySQL returned an empty result set (i.e. zero rows). (Query took 0.0001 seconds.)
¥ Dey nt
i = anme /*140101 SET €OLD_(_SET_CLI: _SET_CLIENT */;
- v Employee
-+ EmployeeDepartmentHist| [Edit inline][Edit] [Create PHP code]
- 4» EmployeePayHistory_2
¥ Location # MySQL returned an empty result set (i.e. zero rows). (Query took 0.0001 seconds.)
-4 ODA_COMMENT
}V Person /*140101 SET €OLD_(_SET_} __SET_RESULTS */;
. Person2 [Edit inline] [Edit][Create PHP code]
- PersonCreditCard_2
Eo el MySQL returned an empty result set (i.e. zero rows). (Query took 0.0001 seconds.)
~ » ProductCategory
~ ¥ ProductCostHistory_2 /*140101 SET @OLD_COLLATION_ CONNECTION=€@COLLATION_CONNECTION */;
~ ¥ ProductDescription B B
4 Productoventony 2 [Edit inine][Edit][Create PHP code]
- juctinventory_:
1) Views
prm— MySQL returned an empty result set (i.e. zero rows). (Query took 0.0001 seconds.)
Rpa /*140101 SET NAMES utf8mbd */;
[Edit inline] [Edit] [Create PHP code]
 MySQL returned an empty result set (i.e. zero rows). (Query took 0.0092 seconds.)
- ~ds2> -- -- -- -- Table structure for table ~ODA_COMMENT -- CREATE TABLE
m Console IMENT‘ (“ID int(11) NOT NULL, “CASE ID" int(1l) DEFAULT NULL, COMMENT" varchar(4000) DEFAULT NULL, ~CREATED BY varchar(255) DEFAULT NULL,

4. In Designer, navigate to the Sync History of ODA Comment and click “Start Full

Sync.”

10

appian

E ODA Comment &

SDATA Sync History

Data Model

Sync Options

USER INTERFACES Status 1 Start Time
Tempo @ Completed 2/1/2023 3:27 PM
List O Failed 1/31/2023 7:19 PM

Search and User Filters
Views and Header
Record Actions

& RECORD-LEVEL SECURITY
Records

@ MONITORING

Performance

Sync History

End Time
2/1/2023 3:27 PM
1/31/2023 7:19 PM

Duration (s) Event
0.2 Manual Sync

0.1 Record Type Import

Z STARTFULL SYNC

Initiated By Total Synced Rows Total Source Rows @
Admin User 1 1
Admin User

5. Navigate to ODA integrationsOverview site, click the site link, and test out
OpenAl's summarization capabilities on the example case management interface.

OpenAlI Auth Setup

11

This will walk you through creating an OpenAl account and accessing the necessary credentials
to use the connected system.

1. Navigate to OpenAl’'s API docs and sign up for an account by clicking “Get
Started”.

Introducing ChatGPT research release Try» Learn more>

@OpenAI APL RESEARCH BLOG ABOUT

OVERVIEW PRICING pocs » EXAMPLES 7 LOG IN

Build next-gen apps with
OpenATI’s powerful models.

Access GPT-3, which performs a variety of natural language
tasks, Codex, which translates natural language to code, and
DALL-E, which creates and edits original images.

READ DOCUMENTATION

Developers can now begjn More than 3 million people are already using DALL-E to extend their creativity

o e A ; and speed up their workflows, generating over 4 million images a day. Get
bu1ld1ng apps with the DALL-E APL started with this same technology in a matter of minutes.

G ARTED LEARN MORE

2. Click on “Personal” then “View API keys".

@ Overview Documentation Examples Playground (@ Help opersanal
julian.grunauer@applan.com

Personal

B ChatGPT is coming to our API soon, sign up to stay updated Signup X Manage account

View APT keys

Invite team

Welcome to OpenAI Help
Pricing
Terms & policies

Start with the basics

Log out

Quickstart tutorial Examples

Learn by building a quick sample app Explore some example tasks

Build an application
" Text completion
’ Generate and edit text
Image generation Beta
Generate and edit images

Embeddings

Search, classify, and compare text

Code completion Limited beta

Generate, edit, and explain code

Fine-tuning

Train amodel for your use case

12

https://openai.com/api/

3. Click “Create new API key” then copy the generated API key.

Important Note: Make sure to copy this key as it will only be shown once.

API key generated

Please save this secret key somewhere safe and accessible. For security
reasons, you won't be able to view it again through your OpenAT
account, If you lose this secret key, you'll need to generate a new one.

| |

oK

13

Appian Connected System Setup
This will walk you through how to set up the connected system within your Appian instance.

1. Download the plugin and load it into your Appian Environment.

2. Click "New” then “Connected System”.

< 2B OpenAl

o All Application Objects ~ CREATE PACKAGE EXPORT APP IMPORT PACKAGE ~ VIEW PACKAGES ~ COMPARE AND DEPLOY
H ALLOBJECTS | M PLUG-INS O UNREFERENCED OBJECTS
Name or description Q - NEW ~ ADDEXISTING = &
*® | Clearfiters 3 DataT)
ata Type Description Last Modified '
@& | OBJECTTYPE [E] Data Store
Al SKil idels Stores process models for the application 1/10/2023 8:18 PM by Admin User
Record Type
Connected System Stores application artifacts such as icons and logos 1/10/2023 8:18 PM by Admin User
Constant Process Model
Data Store Process Report Documentation Stores documents added as supporting documentation for the application 1/10/2023 8:18 PM by Admin User
Data Type [Robotic Process canter Stores document folders and files for the application 1/10/2023 8:18 PM by Admin User
Decision
Document Interface astants Stores expression rules, interfaces, and constants for the application 1/10/2023 8:18 PM by Admin User
Expression Rule (€ Report 5 items
Feed & site
Folder Portal
Group
EB Expression Rule
Integration
Interface ALkl
Portal Decision
Process Madel Constant
uery Rule
Query E& Connected System
Record Type
@ Integration
Report &
Site Web AP
Web API Document
LAST MODIFIED BY B Group
Select one or more users E Group Type
[7] Feed
LAST MODIFIED ON
B Folder
From a2
mm/da/yyy]
To
5 mm/dalyyyy -]

3. Click “OpenAI Connected System”.

Create Connected System

| [search Connected systems. ‘

Docusign Google Cloud Natural Gaogle Cloud Google Cloud Vision
Language Translation

& 2 B I

Google Drive Google reCAPTCHA Google Sheets Guidewire Connected
system

MariaDB Data Source Microsoft Azure LUIS Microsoft Dynamics MySQL Data Source
365

© B @

Openal Connected Orace Data Source PostgresQL Data Salesforce
System Source

>
splunk $QLserver

sharepoint Splunk SQL Server Data
Source

14

4. Name, describe, and input your API key into the Connected System. The
organization parameter is option:
o “For users who belong to multiple organizations, you can pass a header to
specify which organization is used for an API request. Usage from these
API requests will count against the specified organization's subscription
quota.”

5. Press “Test Connection” to validate that the authentication is properly configured.

Create Connected System

OpenAl Connected System
Plugin for integrating with OpenAl
Version: 1

Name *

‘ 0 Openal CSH

Description

OpenAl Connected System Configuration

APl Key @*

Organization @

TEST CONNECTION

GO BACK | CANCEL USE IN NEW INTEGRATION CREATE

Connection successful

TEST CONNECTION

15

Integration Configuration

This section provides information about how to set up your integrations with the connected
system.

1. Select whether the integration reads or writes data from the initial dropdown.
o (Reads Data) — Queries data from the API and allows the result to be
stored as a local variable.
o (Modifies Data) — Mutates data from the API and requires a onSuccess
and onError fields to handle the results of the call. Modifying data requires
the user to interact with Appian in some way to trigger the request.

2. Select an endpoint from the dropdown. To help with selection, there is a search
bar that will sort the dropdown list based on user input. For example, if a user
searches for images, the endpoints relating to image generation will appear at
the top of the dropdown list.

Result Request Response
Connected System *

@& openai csp x
Sort Endpoints Dropdown
images
Sort the endpoints dropdown below with a relevant search query.

Select Endpoint *

. :

Select a Value

POST - Creates an image given a prompt.
POST - Creates an edited or extended image given an original image and a prompt.

POST - Creates a variation of a given image.

DELETE - Delete a file.

POST - Creates a completion for the provided prompt and parameters

POST - Creates a new edit for the provided input, instruction, and parameters

GET - Returns a list of files that belong to the user's organization.

GET - Returns the contents of the specified file

POST - Creates a job that fine-tunes a specified model from a given dataset. Response includes details o...

GET - Gets info about the fine-tune job. [Learn more about Fine-tuning](/docs/guides/fine-tuning)

TEST REQUEST

16

3. Some endpoints have required path parameters. These fields are automatically
generated and added to the url for you. For example, DELETE
/files/{file_id}

Result Request Response
Connected System *

@ openmicse x
Sort Endpoints Dropdown

mages

DELETE - Delete a file.
DELETE Miles/{file_id}

File id*

TEST REQUEST

17

Integration Information

This section contains key information necessary for successful utilization of
the integrations associated with this connected system.

Most POST requests require a request body. Appian provides two interfaces for working
with complex requests—"Specify values for each input” or “Define all values with a

single expression.”

e Specify values for each input: allows for users to specify only the properties they
need; any properties left blank will not be sent in the request.
e Define all values with a single expression: autogenerates an example expression

for the entire request.

Connected System *

@ opacsp x

Operation *
Open Al (Modifies Data) -

If the request modified external data, select (Modifies Data). If the request is a query, and you would like the ability to
save it into a local variable, select (Reads Data)

Sort Endpoints Dropdown

Sort the endpoints dropdown below with a relevant search query.
Select Endpoint *
POST - Creates a completion for the chat message

POST /chat/completions
Request Body @
© Specify values for each input Define all values with a single expression

Autogenerated properties are marked 'text!, ‘true’, '100', and '3.14' for string, boolean, integer, and double properties,
respectively. Make sure to update or remove these autogenerated properties before making the request

Name Type Value

model Text

messages List of Complex Type Edit as expression...

temperature Number (Decimal)

top_p Number (Decimal) An alternative to sampling with temperature, ca
n Number (Integer)

stop Text Up to 4 sequences where the AP will stop gene
max_tokens Number (Integer)

TEST REQUEST

Recommended Usage

Connected System *

& opacse x

Operation *
Open Al (Modifies Data) v

If the request modified external data, select (Modifies Data). If the request is a query, and you would like the ability to
save it into a local variable, select (Reads Data)

Sort Endpoints Dropdown

Sort the endpoints dropdown below with a relevant search query.
Select Endpoint *
POST - Creates a completion for the chat message

POST /chat/completions
Request Body @
Specify values for each input @ Define all values with a single expression

Autogenerated properties are marked 'text!, 'true’, 100", and '3.14' for string, boolean, integer, and double properties,

respectively. Make sure to update or remove these autogenerated properties before making the request.

L EEEMTQAR XN ATE (2]
1v
2v : "text", /*Example: (Required) ID of the model to use. Currently, o
3v B
4v {
Sv text", /*Example: (Required) The role of the author of this meg
6v : "text", /*Example: (Required) The contents of the message*/
7v : "text" /*Example: The name of the user in a multi-user chat*/
8 ¥
9 1,
10~ : 3.14, /*Example: What sampling temperature to use, between @
11 v : 3.14, /*Example: An alternative to sampling with temperature, called
12« : 100, /*Example: How many chat completion choices to generate for each in
13 v : "text", /*Example: Up to 4 sequences where the API will stop generati

14 'stop' can be one of the following types:
15 GesSemimge—

Place cursor on function, rule, or constant to display help

TEST REQUEST

Click “Generate Example Expression” to autogenerate the properties required to make
the request. This view allows you to see the totality of parameters available, nested
required properties that may be hidden in the other view, as well as complete
parameter descriptions. Unless you intend to use most/all of the fields, it is
recommended that you use this view for reference. The two views will not overwrite
each other if both are being edited. Whichever view is selected/saved at the time of
execution will be the view used for the request.

18

Important Note: Remove or comment out superfluous keys/values.

Important Note: Only the autogenerated properties will be captured.

User inputted key/values that are not part of OpenAl’s API specification will not be sent
in the HTTP request. It is possible to use expression rules, record queries, or other
forms of data manipulation to pass in values, as long as the keys/data structure remain
the same as the autogenerated properties.

Important Note: Certain fields are marked as “(Required).” These fields must be
inputted before making the request

Some requests have the option to receive a file back. If you expect to receive a file
back, make sure to click “Yes” to the “"Will there be a file returned in the response?”
This will allow you to control the filename of the incoming document, as well as where
to save this file in your Appian application.

Important Note: Make sure to add the extension of the file (ex. .png, .jpg, ...) you
expect to receive back.

Important Note: If you expect to receive multiple files back, they will be automatically
indexed (ex. fileNamel.png, fileName2.png, ...)

Important Note: Currently the only endpoints returning files are those relating to
image generation. Use the value “b64_json” for the “response_format” key and
configure the filename and file location to catch the incoming file. Specify “url” to
receive a url to the generated image.

19

Sort Endpoints Dropdown —
Result Request Response
image
Sort the endpoints dropdown below with a relevant search query.
Select Endpoaint *
POST - Creates an image given a prompt.
POST fimages/generations

Reguest Body @

=EE QR HTE L7}

)
il

Place cursor on function, rule, or constant te display help

Auto;
prop

properties are marked 'text, ‘rue’, 100", and '3.14' for string, boolean, integer, and double
ectively. Make sure to update these autogenerated properties before making the request.

Will there be a file returned in the response?
©ves No

Response File Save Location*

n
[+]

B o Artifacts x
Choose the folder you would like to save the response file to

Response File Name *

Choose the name of the file received in the response and the extension. ex. ‘sampleFileName.png’

TEST REQUEST

Pre-made models vary by usage. Make sure to use the correct model for the correct
endpoints.

e For example, text-davinci-003, text-curie-001, text-babbage-001, text-ada-001,
and custom, fine-tuned models can be used for the POST /completions endpoint,
but only text-davinci-edit-001 can be used for the POST /edits endpoint. For
embeddings, use the models listed here.

e Learn more about models and their usage here.

If you need to submit an empty string value, simply add a space between quotes (ex.
{prompt: “ “})

20

https://beta.openai.com/docs/guides/embeddings/embedding-models
https://beta.openai.com/docs/models/overview

Fine-Tuning Flow

This section contains instructions on steps to train an OpenAl model based on Appian
data.

Important Note. Fine-tuning is often not the best way to teach GPT about your
information. Providing GPT with context along with your prompt often leads to the best
results. Fine-tuning is not yet available for GPT-4.

Learn more from these links:
References

e Fine-Tuning v mantic Retrieval

Walkthrough vector embeddings/context retrieval
Large pdf example

Multi-user chatbot

Supabase documentation chatbot

1. Use the JSONLines operation to create a jsonLines file. Read the fine-tuning docs and
text-completion guide. Make sure to append the filename with the extension “.jsonl”

III

Important Note. Use the extension “.jsonl” when setting the file name

Important Note. You can either input the data directly into the expression box (as
shown in the first example 1), or you can use a record with fields of type “prompt” and
“completion” and pass in a record query as shown in example 2.

Sample code for expression query:

JavaScript

a!forEach(
items: alqueryRecordType(
recordType:
'recordType!{e2a3f34a-869c-45ed-9b10-27abf2a56c01}0
promptCompletion',
fields: {

'recordType! {e2a3f34a-869c-45ed-9b10-27abf2a56c01}0
promptCompletion.fields.{28b5e0683-da90-4d94-bd7f-c846a998
53c8}prompt"’,

'recordType! {e2a3f34a-869c-45ed-9b10-27abf2a56c01}0
promptCompletion.fields.{063686e9e-da88-476c-ac79-178d155d
7270 }completion’

21

https://youtu.be/9qq6HTr7Ocw
https://www.youtube.com/watch?v=xzHhZh7F25I&t=3s
https://www.youtube.com/watch?v=ih9PBGVVOO4
https://www.pinecone.io/learn/javascript-chatbot/#prerequisites
https://www.youtube.com/watch?v=Yhtjd7yGGGA&t=4s
https://beta.openai.com/docs/guides/fine-tuning/prepare-training-data
https://beta.openai.com/docs/guides/completion

pagingInfo: a!pagingInfo(startIndex: 1,
batchSize: 1000)
) .data,
expression: {
prompt:
fvlitem[' recordType!{e2a3f34a-869c-45ed-9b10-27ab
f2a50c01}0
promptCompletion.fields.{03686e9e-da88-476c-ac79-
178d155d7270}completion’],
completion:
fv!item[' recordType!{e2a3f34a-869c-45ed-9b10-27ab
f2a50c01}0

G Result Request Response

Connected System *

& openai csp x Success!

Sort Endpoints Dropdown Time
image 186 ms

Sort the endpoints dropdown belaw with a relevant search query. Prepare: < 1 ms - Execute: 186 ms (Send] Watt/Recehe: 150 ms) - Transform: < 1 ms
Value: Result @
+ Dictionary
JSONLINES - Creates a JSON Lines file from Appian data. - + Response Dictionary
Response "Document successfully created” (Tex)

Status Code: 200 (Number (Integer))

Select Endpoint *

JSONLINES /JSONLines

Save to Folder * Document: 1517 - sampleJSONFile.json (Document)
O Artifacts X =0
Request Body @

EE/QX X &TE 7]

1v{
2v outputFileName: "samplelSONFile.json”, /*Example: Name of the output file
3w toJsonLines:

Sy prompt: “sample instruction”, /*Example: (Required) The prompt(s) to
6v completion: "sample response” /*Example: (Required) Expected result,

"sample instruction2", /*Example: (Required) The prompt(s) to
10 completion: "sample response2” /*Example: (Required) Expected result,
}

Place cursor on function, rule, or constant to display help

Enter list of values in the form of {tojsonLines: { prompt’: ‘prompt text>", ‘completion’: ‘<ideal generated text>"),
{'prompt’: '<prompt text>", ‘completion’: '<ideal generated text>

@ Result Request Response

Connected System *
@ openai csp x Success]
Sort Endpoints Dropdown N
Time
|ine-tune model 126 ms

) . Prepare: < 1 ms - Execute: 126 ms (Send [Wait | Receie: 83 ms) - Transform: < 1 ms
Sort the endpoints dropdown below with a relevant search query. a !

Value: Result
Select Endpoint * @

v Dictionary
JSONLINES - Creates a JSON Lines file from Appian data. M ~ Response Dictionary
Response "Document successfully created” (Text)
JSONLINES /JSONLI
) JSONLnes Status Code: 200 (Number (Integer))
Save to Folder * Document: 1519 - sampleJSONFile.json (Document)
0 Artifacts % = 0
Request Body @
GENERATE EXAMPLE EXPRESSION

QAR TR ©

2v outputFileName: "sampleJSONFile.json", /*Example: Name of the output fil
3v tolsonlLines: {
e alforEach(

Sv items: a!queryRecordType(
6 recordType: [recordTypel0 promptConpletion ,
7 fields: {

8 [0 promptCompletion.prompt ,

22

2. Use the “Upload a file...” endpoint (POST /files) to upload the file to OpenAl.

Important Note: Make sure to set the purpose to “fine-tune” so that OpenAl knows
that this file will be used to fine-tune a model.

@ Result Request Response
Connected System *

@ operaicsp x Success!
Sort Endpoints Dropdown .

Time
upload 1,300 ms

Prepare < i ms - Execute ¥ Transform
Soft the endpoints dropdown below with a relevant search query.

Value: Re it
Select Endpoint * alue: Resule @
POST - Upload a file that contains document(s) to be used across various endpoints/features. Currentl... + Response Dictiona
POST il filename "sample)SONFile769341990465795154.json" (Tex
ST iiles

purpose "fine-tune” (Text
Document File * bytes 460 (Number (integer)
. created_at 1674596673 (Number (Integer))

[E] sampicjsonrile x =0 id *file-ydTRHMU2z55tl45c0SRIFMAM” (Text)

status_details null (Null)
abject "file” (Text)

oaded. If the " purpose " is set to
senting your [training examples)

lines.readthedoc
d with "prompt" and "

Name of the [SON Lines}(hp:
“fine-tune”, each line is a J5¢

rec.

(/e s/fine-tuning/prepare-training-data). status "uploaded” (Text
Request Body @ Status Code: 200 (Number (Integer))
r EEMrTQXALETE @

: "fine-tune” /*Example: (Required) The intended purpose of the up

Place cursor on function, ruie, or constant to display help

1 string, boolean, integer, and double
generated properties before making the request

3. Use the “Create a job that fine-tunes...” (POST /fine-tunes) to create a fine-tuned
model based on the uploaded file.

erated properties are ma
espectively. Make

Important Note: Use the id received from the previous call as the “training_file” value

@ Result Request Response
Connected System *

@ openai csp x Success!
Sort Endpoints Dropdown
Time
fine-tune 381 ms
Prepare: Execute ms) - Transform

Sort the endpoints dropdown below with a relevant search query.
" Value: Result
Select Endpoint * °

POST - Creates a job that fine-tunes a specified model from a given dataset. Response includes details... * - Respon‘se Dictionary
result_files fv nt - 0 items
= hyperparams Dictionary

Request Body @ n_epochs 4 (Numbe
bateh_size null (N
prompt_loss_ weight 0.01 (Number (Decimal)

learning_rate_multiplier null (Null)
raQaxnf&ne ° fine_tuned_model null (Null
created_at 1674596983 (N
: "file-y4TRHU2ZS5t145c@sR1FmnM", /*Example: (Required) The ~ training_files List of [

POST /fine-tunes

~
liil
Il
il

Wr

e

tionary
filename "sample)SONFile769341990465795154 json" (Te:
purpose “fine-tune”
bytes 460 (Number (Ir
created_at 1674596673 (Nurr
id "file-ydTRHMU2z55t145c0sRIFmnM" (Text 23
status_details null (Null)

object “file”

4. Check the status of the fine-tune job with the endpoint “Get info about the
fine-tune...” (GET /fine-tunes/{fine_tune_id}). Status will be “pending” while
the model is still training. The get status/info integrations will fail until status:
“succeeded” If this is important for a workflow (say auto-creating a new model every
month based on new data), you can create a process model to loop and continue
checking the status of the model until it is ready to use. OpenAl does not currently have
webhook functionality.

Important Note: After your job first completes, it may take several minutes for your
model to become ready to handle requests. If completion requests to your model time
out, it is likely because your model is still being loaded. If this happens, try again in a

few minutes.

24

Connected System *
@ openaicsp x
Sort Endpoints Dropdown

fine-tune

Sort the endpoints dropdown below with a relevant search query.

Select Endpoint *

GET - Get fine-grained status updates for a fine-tune job.

GET ffine-tunes/{fine_tune_id}/events
Fine_tune_id *
ft-uth4L5bVORZIzAx4)8CNypSA

Will there be a file returned in the response?
Yes @ No

5. When a job has succeeded, the fine_tuned_model field will be populated with the

TEST REQUEST

@ Result

Ti

Request Response

Success!

me

308 ms

Pr

epare

Execute: T A Transform

Value: Result @

Dictionary

~ Response Dictionary
~ data nary
Dictior

-

Ievel (T
created_at 1674596983 umber (Integer))

message "Created fine- lune ﬂ uthaLshVQRzlexajStNypsA (Text)

ob]ecl "fine-tune-event” (Text)

Dictiona

level " |nfu

created_at 1674597451 ber (Integer))
message "Fine-tune costs SO 00" (Te:
object "fine-tune-event" (Text)

Dictionary

level “info"

created_at 1674597451 ber (Integer))

message "Fine- :uneenqueued Queue numher 14" (Te:
object "fine-tune-event”

Dictionary

level "info" (Text)
created_at 1674597484 (Number (Integer))

message "Fine-tune is in the queue. Queue number: 13" (Text)

object "fine-tune-event" (Text)

level "info" (Tex
created_at 1674598154 (Number (Integer))

message "Fine-tune is in the queue. Queue number: 12" (Tex

object "fine-tune-event" (Text)

Dictionary

level "info" (Text
created_at 1674598232 (Number (Integer))

message "Fine-tune is in the queue. Queue number: 11" (Text)

object "fine-tune-event” (Text)

Dictionary

level "info" (Text)
created_at 1674598304 (Number (Integer))

message "Fine-tune is in the queue. Queue number: 10" (

object "fine-tune-event” (Text)

Dictionary

ext)

name of the model. You may now specify this model as a parameter to the Completions

API (POST /completions,

).

After your job first completes, it may take several minutes for your model to become
ready to handle requests. If completion requests to your model time out, it is likely
because your model is still being loaded. If this happens, try again in a few minutes.

You can start making requests by passing the model hame as the model parameter of a

completion request:

25

https://beta.openai.com/docs/api-reference/completions
https://beta.openai.com/docs/api-reference/completions

Connected System *
@ openal csp x
Sort Endpoints Dropdown
fine-tune mode!
Sort the endpoints dropdown below with a relevant search query.
Select Endpoint *
POST - Creates a completion for the provided prompt and parameters -
POST /completions

Request Body @

GENERATE EXAMPLE EXPRESSION
EE/QR X EHFTE L]

model: "curie:ft-personal-2023-91-24-22-42-51", /*Example: (Required) ID
prompt: "hi there"

-

Place ursor on function, rule, or constant to display help

Autogenerated properties are marked 'text’ true’, '100', and '3.14' for string, boolean, integer, and double

properties, respectively. Make sure to update or remove these autogenerated properties before making the request.

Will there be a file returned in the response?
ves @ No

@ Result Request Response

Success!

Time
3,992 ms

Prepare: < 1 ms - Execute: 3,992 ms (Send) Wait| Receive: 3,990 ms) - Transform: < 1 ms
Value: Result @
~ Dictionary
* Response Dictionary
created 1674614889 (Number (Integer))
~ usage Dictionary
completion_tokens 16 (Number (Integer))
prompt_tokens 2 (Number (Integer))
total_tokens 18 (Number (Integer))
model "curie:ft-personal-2023-01-24-22-42-51" (Text)
id "cmpl-6cQ7VXXcqrNWS5CtaRL4PknObnRexk" (Text)
= choices List of Dictionary - 1 item
« Dictionary
finish_reason "length” (Text)
index 0 (Number (Integer))
text ", This is Akumasuraha.” “WHAT WERE" (Text)
logprobs null (Null)
object "text_completion” (Text)
Status Code: 200 (Number (Integer))

26

