
Connected System Plugin for Appian

Julian Grunauer
Technology Strategy Engineer

Version 1.2.2

Introduction

The introduction of ChatGPT has shaken the world with its revolutionary approach to AI and
natural language processing. It is evident that as technology companies move forward
integrating AI into their workflow is critical. Appian itself is integrating AI in a variety of ways;
from utilizing it as an inspiration tool to being a developer aid.

The OpenAI Connected System allows users to give prompts and receive AI generated
responses, whether that be images (DALLE-2), audio (Whisper), or text (ChatGPT). These
responses can then be edited, updated, expanded upon, or deleted by the AI model as desired.
Users can also fine-tune (custom train) a model based on Record data.

Privacy Policy
All information passed through AI tools will be processed and may remain with the
organizations that develop those tools. Please exercise caution with what information is
disclosed to the AI tool for this reason.

Further Information
Please see the below resources from OpenAI for any legal questions and concerns.

1. Privacy Policy
2. Terms of Use
3. Sharing & Publication Policy
4. Coordinated Vulnerability Disclosure Policy

1

https://openai.com/privacy/
https://openai.com/terms/
https://openai.com/api/policies/sharing-publication/
https://openai.com/security/disclosure/

Integration Overview

Integration Function
Chat Completion (ChatGPT) Given a chat conversation, the model will return a chat completion response.

Create Completion

Creates a completion for the provided prompt and parameters. Use Function Calling
to have GPT select a function to call and provide arguments to call that function.
(Soon to be deprecated, use chat completions instead)

Create Completion Edit
Given a prompt and an instruction, the model will return an edited version of the
prompt. (Soon to be deprecated, use chat completions intead)

Create DALLE Image Given a prompt and/or an input image, the model will generate a new image.

Transcribe Audio Transcribes audio into the input language.

Create Translation Translates audio into English.

Edit/Extend DALLE Image Creates an edited or extended image given an original image and a prompt.

Create Variation of Image Creates a variation of a given image

Create Vector Embedding Creates an embedding vector representing the input text.

Upload a document

Upload a file that contains document(s) to be used across various endpoints/features.
Currently, the size of all the files uploaded by one organization can be up to 1 GB.
Please contact us if you need to increase the storage limit.

Return OpenAI Files Returns a list of files that belong to the user's organization.

Delete OpenAI File Delete a file

Return OpenAI File Information Returns information about a specific file.

Return OpenAI File Contents Returns the contents of the specified file

Create Fine

Tuning Job - Creates a job that fine-tunes a specified model from a given dataset.
Response includes details of the enqueued job including job status and the name of
the fine-tuned models once complete.

List Fine Tuning Jobs - List your organization's fine-tuning jobs.

Cancel Fine Tuning Job - Immediately cancel a fine-tune job.

Retrieve Fine Tune Job Info - Gets info about the fine-tune job.

Get Fine Tuning Job Status - Get fine-grained status updates for a fine-tune job.

List Available Models
Lists the currently available models and provides basic information about each one
such as the owner and availability.

Delete Fine
Tuning Model - Delete a fine-tuned model. You must have the Owner role in your
organization.

Retrieve Model Instance Information
Retrieves a model instance, providing basic information about the model such as the
owner and permissioning.

Content Policy Violation Classifies if text violates OpenAI's Content Policy

2

Create JSON Lines File
Creates a JSON Lines File from Appian data. This is the file format OpenAI expects to
receive for fine-tuning jobs. Use this generated file to upload and fine-tune a model.

3

Basic ChatGPT Chatting Interaction

This will walk you through basic chatting functionality with ChatGPT using the /chat/completions
endpoint.

1. Set up OpenAI account and OpenAI connected system (instructions below)
2. Select whether the integration reads or writes data from the initial dropdown.

a. (Reads Data) – Queries data from the API and allows the result to be stored as a
local variable.

b. (Modifies Data) – Mutates data from the API and requires an onSuccess and
onError fields to handle the results of the call. Modifying data requires the user
to interact with Appian in some way to trigger the request.

3. Select “creates a completion for the chat message”
4. Fill out the required fields

a. It is highly recommended that you use the “Specify values for each input” UI to
fill in your field values and “Define all values with a single expression” to gain
insight into the descriptions of all the available parameters.

5. For a basic chat interaction, the only parameters required are “model” and “messages”
with at least one {role: “”, content: “”} object. The “Generate Expression” button will
allow you to introspect all possible fields that you can fill out, but these are the only
required fields for this interaction. For example, messages can be filled out as follows. As
the interaction with gpt grows, pass in more of these objects, listing the role as assistant
to record GPT’s responses.

4

Unset

ChatGPT Function Calling

Function calling is a way to allow GPT to select relevant functions to call to ground its answer in
user data. The developer lists descriptions of functions along with a user query and GPT will be
able to respond with the correct function to call and the arguments to call it with. The developer
then can call this function and pass the function’s response along with the original user’s query
so that GPT can answer the query based on the data provided. Read about function calling here
and here before continuing.

1. Follow the instructions for “Basic GPT Interaction” above
2. Following the example provided from the OpenAI documentation, format your initial

function parameter for the initial function calling query as follows. Make sure to wrap
“parameters” field in a!toJson({})

3.

{
{
name: "get_current_weather",
/*Example: (Required) The name of the function to be called. Must be a-z,

A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.*/

5

https://openai.com/blog/function-calling-and-other-api-updates
https://platform.openai.com/docs/guides/gpt/function-calling

Unset

description: "Get the current weather in a given location",
/*Example: A description of what the function does, used by the model to

choose when and how to call the function.*/
parameters: a!toJson(
{
type: "object",
properties: {
location: {
type: "string",
description: "The city and state, e.g. San Francisco, CA"

},
unit: {
type: "string",
enum: { "celsius", "fahrenheit" }

}
},
required: { "location" }

}
)/*Example: (Required) The value for 'parameters' is dynamic and must be

wrapped in a!toJson. Example parameters value: a!toJson({ type: "object",
properties: { location: { type: "string", description: "The city and state,
e.g. San Francisco, CA" }, unit: { type: "string", enum: { "celsius",
"fahrenheit" } } }, required: { "location" } }). The parameters the functions
accepts, described as a JSON Schema object. See the
[guide](/docs/guides/gpt/function-calling) for examples, and the [JSON Schema
reference](https://json-schema.org/understanding-json-schema/) for
documentation about the format.To describe a function that accepts no
parameters, provide the value `{"type": "object", "properties": {}}`.*/

}
}

a. The response will include the function it chose to call (in other examples you can
list more than one function) along with the arguments to call it. With this
response, call the function of choice (in this example, it would most likely be
another integration to get location weather, but this could also be used to call
other SAIL functions)

4. After receiving the response from the called function, you can pass this information back
to GPT to answer the user’s initial query

a. The functions parameter will remain the same, while the messages parameter
will look like:

{
{
{

6

role: "user",
content: "What is the weather like in Boston?"

},
{
role: "assistant",
content: null,
function_call: {
name: "get_current_weather",
arguments: a!toJson({ location: "Boston, MA" })

}
},
{
role: "function",
name: "get_current_weather",
content: {
temperature: "22",
unit: "celsius",
description: "Sunny"

}
}

}
}

b. Optionally use the “function_call” parameter which controls how the model
responds to function calls. "none" means the model does not call a function, and
responds to the end-user. "auto" means the model can pick between an end-user
or calling a function. Specifying a particular function via `{"name":\
"my_function"}` forces the model to call that function. "none" is the default
when no functions are present. "auto" is the default if functions are present.

5. The final response is GPT responding to the user’s initial query using the data provided
from the function.

7

OpenAI Sample App Setup

This will walk you through importing the sample application and loading in a SQL file into the
cloud database. The sample app has not been updated to reflect the switch to the
/chat/completions endpoint. Make sure to use /chat/completions when building your own
application.

1. Import the OpenAIDemoApp.zip file into your Appian environment.

2. Click the waffle menu in the top right corner and open the “Cloud Database”

8

3. Click “Import” and load the attached SQL file

9

4. In Designer, navigate to the Sync History of ODA Comment and click “Start Full
Sync.”

10

5. Navigate to ODA integrationsOverview site, click the site link, and test out
OpenAI’s summarization capabilities on the example case management interface.

OpenAI Auth Setup

11

This will walk you through creating an OpenAI account and accessing the necessary credentials
to use the connected system.

1. Navigate to OpenAI’s API docs and sign up for an account by clicking “Get
Started”.

2. Click on “Personal” then “View API keys”.

12

https://openai.com/api/

3. Click “Create new API key” then copy the generated API key.

Important Note: Make sure to copy this key as it will only be shown once.

13

Appian Connected System Setup

This will walk you through how to set up the connected system within your Appian instance.

1. Download the plugin and load it into your Appian Environment.

2. Click “New” then “Connected System”.

3. Click “OpenAI Connected System”.

14

4. Name, describe, and input your API key into the Connected System. The
organization parameter is option:

o “For users who belong to multiple organizations, you can pass a header to
specify which organization is used for an API request. Usage from these
API requests will count against the specified organization's subscription
quota.”

5. Press “Test Connection” to validate that the authentication is properly configured.

15

Integration Configuration

This section provides information about how to set up your integrations with the connected
system.

1. Select whether the integration reads or writes data from the initial dropdown.
○ (Reads Data) – Queries data from the API and allows the result to be

stored as a local variable.
○ (Modifies Data) – Mutates data from the API and requires a onSuccess

and onError fields to handle the results of the call. Modifying data requires
the user to interact with Appian in some way to trigger the request.

2. Select an endpoint from the dropdown. To help with selection, there is a search
bar that will sort the dropdown list based on user input. For example, if a user
searches for images, the endpoints relating to image generation will appear at
the top of the dropdown list.

16

3. Some endpoints have required path parameters. These fields are automatically
generated and added to the url for you. For example, DELETE
/files/{file_id}

17

Integration Information

This section contains key information necessary for successful utilization of
the integrations associated with this connected system.

Most POST requests require a request body. Appian provides two interfaces for working
with complex requests—”Specify values for each input” or “Define all values with a
single expression.”

● Specify values for each input: allows for users to specify only the properties they
need; any properties left blank will not be sent in the request.

● Define all values with a single expression: autogenerates an example expression
for the entire request.

Recommended Usage

Click “Generate Example Expression” to autogenerate the properties required to make
the request. This view allows you to see the totality of parameters available, nested
required properties that may be hidden in the other view, as well as complete
parameter descriptions. Unless you intend to use most/all of the fields, it is
recommended that you use this view for reference. The two views will not overwrite
each other if both are being edited. Whichever view is selected/saved at the time of
execution will be the view used for the request.

18

Important Note: Remove or comment out superfluous keys/values.

Important Note: Only the autogenerated properties will be captured.
User inputted key/values that are not part of OpenAI’s API specification will not be sent
in the HTTP request. It is possible to use expression rules, record queries, or other
forms of data manipulation to pass in values, as long as the keys/data structure remain
the same as the autogenerated properties.

Important Note: Certain fields are marked as “(Required).” These fields must be
inputted before making the request

Some requests have the option to receive a file back. If you expect to receive a file
back, make sure to click “Yes” to the “Will there be a file returned in the response?”
This will allow you to control the filename of the incoming document, as well as where
to save this file in your Appian application.

Important Note: Make sure to add the extension of the file (ex. .png, .jpg, …) you
expect to receive back.

Important Note: If you expect to receive multiple files back, they will be automatically
indexed (ex. fileName1.png, fileName2.png, …)

Important Note: Currently the only endpoints returning files are those relating to
image generation. Use the value “b64_json” for the “response_format” key and
configure the filename and file location to catch the incoming file. Specify “url” to
receive a url to the generated image.

19

Pre-made models vary by usage. Make sure to use the correct model for the correct
endpoints.

● For example, text-davinci-003, text-curie-001, text-babbage-001, text-ada-001,
and custom, fine-tuned models can be used for the POST /completions endpoint,
but only text-davinci-edit-001 can be used for the POST /edits endpoint. For
embeddings, use the models listed here.

● Learn more about models and their usage here.

If you need to submit an empty string value, simply add a space between quotes (ex.
{prompt: “ “})

20

https://beta.openai.com/docs/guides/embeddings/embedding-models
https://beta.openai.com/docs/models/overview

JavaScript

Fine-Tuning Flow

This section contains instructions on steps to train an OpenAI model based on Appian
data.

Important Note. Fine-tuning is often not the best way to teach GPT about your
information. Providing GPT with context along with your prompt often leads to the best
results. Fine-tuning is not yet available for GPT-4.

Learn more from these links:
References

● Fine-Tuning vs Semantic Retrieval
● Walkthrough vector embeddings/context retrieval
● Large pdf example
● Multi-user chatbot
● Supabase documentation chatbot

1. Use the JSONLines operation to create a jsonLines file. Read the fine-tuning docs and
text-completion guide. Make sure to append the filename with the extension “.jsonl”

Important Note. Use the extension “.jsonl” when setting the file name

Important Note. You can either input the data directly into the expression box (as
shown in the first example 1), or you can use a record with fields of type “prompt” and
“completion” and pass in a record query as shown in example 2.

Sample code for expression query:

a!forEach(
items: a!queryRecordType(

recordType:
'recordType!{e2a3f34a-869c-45ed-9b10-27abf2a50c01}O
promptCompletion',

fields: {
'recordType!{e2a3f34a-869c-45ed-9b10-27abf2a50c01}O

promptCompletion.fields.{28b5e083-da90-4d94-bd7f-c840a998
53c8}prompt',

'recordType!{e2a3f34a-869c-45ed-9b10-27abf2a50c01}O
promptCompletion.fields.{03686e9e-da88-476c-ac79-178d155d
7270}completion'

21

https://youtu.be/9qq6HTr7Ocw
https://www.youtube.com/watch?v=xzHhZh7F25I&t=3s
https://www.youtube.com/watch?v=ih9PBGVVOO4
https://www.pinecone.io/learn/javascript-chatbot/#prerequisites
https://www.youtube.com/watch?v=Yhtjd7yGGGA&t=4s
https://beta.openai.com/docs/guides/fine-tuning/prepare-training-data
https://beta.openai.com/docs/guides/completion

},
pagingInfo: a!pagingInfo(startIndex: 1,

batchSize: 1000)
).data,
expression: {

prompt:
fv!item['recordType!{e2a3f34a-869c-45ed-9b10-27ab
f2a50c01}O
promptCompletion.fields.{03686e9e-da88-476c-ac79-
178d155d7270}completion'],

completion:
fv!item['recordType!{e2a3f34a-869c-45ed-9b10-27ab
f2a50c01}O

22

2. Use the “Upload a file…” endpoint (POST /files) to upload the file to OpenAI.

Important Note: Make sure to set the purpose to “fine-tune” so that OpenAI knows
that this file will be used to fine-tune a model.

3. Use the “Create a job that fine-tunes…” (POST /fine-tunes) to create a fine-tuned
model based on the uploaded file.

Important Note: Use the id received from the previous call as the “training_file” value

23

4. Check the status of the fine-tune job with the endpoint “Get info about the
fine-tune…” (GET /fine-tunes/{fine_tune_id}). Status will be “pending” while
the model is still training. The get status/info integrations will fail until status:
“succeeded” If this is important for a workflow (say auto-creating a new model every
month based on new data), you can create a process model to loop and continue
checking the status of the model until it is ready to use. OpenAI does not currently have
webhook functionality.

Important Note: After your job first completes, it may take several minutes for your
model to become ready to handle requests. If completion requests to your model time
out, it is likely because your model is still being loaded. If this happens, try again in a
few minutes.

24

5. When a job has succeeded, the fine_tuned_model field will be populated with the
name of the model. You may now specify this model as a parameter to the Completions
API (POST /completions, …).

After your job first completes, it may take several minutes for your model to become
ready to handle requests. If completion requests to your model time out, it is likely
because your model is still being loaded. If this happens, try again in a few minutes.
You can start making requests by passing the model name as the model parameter of a
completion request:

25

https://beta.openai.com/docs/api-reference/completions
https://beta.openai.com/docs/api-reference/completions

26

