
Mail 

Mail to Database Smart Service 

Takes all unread email from a mailbox and adds entries directly to a database table. 

• The original email is saved as an EML based on three attachment type options 
o EML with attachments removed 
o EML with attachments included 
o Both (2 EMLs of original email) - EML with attachments removed and EML with 

attachments included 
• Each email attachment is saved as its own document 
• The database tables store the Appian document ids, email recipients, subject and body (text 

and HTML) 

This smart service is intended for use with a single mailbox. Where multiple mailboxes exist, work 
with the mail server administrator to consolidate them together by either: 

1. Copying mail from individual mailboxes into a master mailbox 
2. Replace the individual mailboxes with email aliases that point to a single mailbox 

While it may technically be possible to poll multiple mailbox, this is not recommended or supported 
by this smart service. 
Where either options above cannot be implemented an alternative solution should be sought and this 
plug-in should not be used. 

The designer is responsible for ensuring only one instance of this node is running at one time. The 
behaviour for multiple instances running at the same time is undefined. 
While this node attempts to detect if it is already running, designers should not rely on this 
behaviour, especially in environments that utilise multiple application servers. 

Emoji’s are removed from the subject and body before saving to the database. The EML file is 
unchanged and will contain the emoji’s. 

The number of email this smart service can read per minutes will depends on the network speed and 
average size of the email. 
Where a good network connection is available and average total size of 2.5MB this node is expected 
to read around 10-15 mail per minutes (your mileage may vary) 

If updating from an older version of the plug-in, the APP_MAIL_POLER table/cdt will need to be 
updated to add the DOC_ID_WITH_ATTACHMENTS column. Prior versions of the smart service 
node have been deprecated and the new Configure Mail Server to Database node will need to be 
used. 

Node Inputs 



Input 
Data 
Type Required Description 

Protocol Text Yes Mail server protocol (e.g imap, imaps, pop3, pop3s) 

Host Text Yes Mail server IP or hostname 

Port Integer Yes Mail server port 

Mail Folder Text No Mail server folder name. Defaults to “INBOX” 

SCS System 
Key 

Text Yes The secure credential store key as defined in the 
Administration Console. Fields for both “username” and 
“password” are required. Target mailbox (if different to 
users default) can be set by appending to the username, 
e.g: domain\user\mailbox 

Time Limit Integer No The maximum amount of time in milliseconds to continue 
processing email while the mailbox is not empty. Default 
60,000 (1 minute). If more email remain after the time 
limit, they will be processed on the next execution of this 
smart service. If all email is processed before the time limit 
is reached the node will end early. A minimum of 1 and 
maximum of 59 minutes can be configured. 

On Success Text Yes The action to take on the email after successfully adding to 
the database 

On Failure Text Yes The action to take on the email when failing to add to the 
database 

Attachment 
Folder 

Folder Yes The folder to save attachments to 

JNDI Name Text Yes The JNDI name of the data source that contains the tables 
to save the email to 



Input 
Data 
Type Required Description 

Java Mail 
Keys 

Text Yes See JavaMail Properties section below 

Java Mail 
Values 

Text Yes See JavaMail Properties section below 

EML 
Attachment 
Type 

Text Yes Options include “Separate Attachments from EML”, 
“Include Attachments in EML”, or “Both”. Defaults to 
“Separate Attachments from EML” 

JavaMail Properties 

This Smart Service uses the JavaMail library to poll the mailbox. There are many different properties 
(imap, pop3) that can be configured to improve performance and compatibility. 

The following properties are always recommended to be set: 

Key 
Suggested 

Value Description 

mail.<protocol>.connectiontimeout 10000 Socket connection timeout value in 
milliseconds. This timeout is implemented 
by java.net.Socket. Default is infinite 
timeout. 

mail.<protocol>.timeout 10000 Socket read timeout value in milliseconds. 
This timeout is implemented by 
java.net.Socket. Default is infinite timeout. 

mail.<imap/imaps>.fetchsize 512000 Partial fetch size in bytes. Defaults to 
16,000 

The following properties are known to help with authentication compatibility for IMAP with 
Microsoft Exchange. This is needed for access to shared mailboxes (all need to be set to “true”. 
See https://www.mulesoft.org/jira/browse/MULE-9355 for additional info. 

https://javaee.github.io/javamail/docs/api/com/sun/mail/imap/package-summary.html
https://javaee.github.io/javamail/docs/api/com/sun/mail/pop3/package-summary.html
https://javaee.github.io/javamail/FAQ
https://www.mulesoft.org/jira/browse/MULE-9355


Key Value Description 

mail.<imap/imaps>.auth.plain.disable true If true, prevents use of the AUTHENTICATE 
PLAIN command. Default is false. 

mail.<imap/imaps>.auth.ntlm.disable true If true, prevents use of the AUTHENTICATE 
NTLM command. Default is false. 

mail.<imap/imaps>.auth.gssapi.disable true If true, prevents use of the AUTHENTICATE 
GSSAPI command. Default is false. 

Node Outputs 

Output 
Data 
Type Description 

Error 
Occurred 

Boolean Returns true if an error has occurred while processing any email 

Error 
Message 

Text The last error message that occurred. Previous errors messages are 
output to application server log 

Mail Count Integer Count of email that were successfully read 

Error Count Integer Count of email that could not be read 

Building 

Development Build 

To create a plug-in jar for testing, run the following Maven command: 

• mvn clean package 

• The jar can be found in /target 

Release Build 

To create a new public release, run the following Maven commands: 



• mvn release:clean 

• mvn release:prepare -DautoVersionSubmodules=true -DpushChanges=false 

• git push origin master --tags 

• The release jar can be found in /target 

 


