
This plug-in provides an alternative to sending emails to an Appian process model when inbound email
integration is requested. Instead of the email being forwarded to Appian, this plug-in reads the emails
directly from the Exchange mailbox using the MS Graph API as described below:

Reads the mailbox using the MS Graph API
(Optionally) Converts the email to an EML file stored as an Appian document, with (optionally)
attachments removed from it
Store all email attachments as separate Appian documents
Store all email metadata (subject, author, recipients, etc...) into a set of tables in the database

To deploy and use the plugin, follow the steps below:

Download the component from the App Market.
Deploy the plugin through the admin console of your Appian site or by copying the plugin zip file to
the plugins folder
The zip file "MS Graph Mail Poller applications.zip" contains an example Appian application (version
21.4+) and the admin console settings needed to use the plugin. Use this to understand how to use it.
Run the SQL scripts that correspond to your database. This will create the necessary tables in the
database.
The application is built for MySQL database. If you use Oracle, update the CDTs in the application
with the XDSs found in the app/Oracle folder. ** When upgrading from the EWS Mail Poller, you can
reuse the same tables, but be aware that there are addition columns to add.
Deploy and configure the admin console settings using the properties customization file.

Alternatively, the credentials store required by the plugin can be created manually. It requires the following
attributes:

secret: The client secret belonging to the Azure application for this Appian application
tenant: The tenant to use. Usually something like <CLIENT_TENANT_NAME>.onmicrosoft.com

appicationID: the application ID (client ID) provided by the Azure team
proxyUsername: In case you need to connect through an authenticated proxy
proxyPassword: The password in case you need to connect through an authenticated proxy

In Azure, register an application for Appian to use client credentials. This application needs to have the
relevant mailboxes in scope that it will need to connect to. For MSGraph permissions, the following are
required: Type: Application Permission: Mail.ReadWrite

MS Graph Mail Poller

Deployment First Time Instructions

Upgrade Instructions

DISCLAIMER: be aware that this version is NOT backwards compatible. The MS Graph API has
undergone some larger changes, especially in the Authentication part. Deploying this plugin will thus
break any existing mail poller nodes and you have to replace them with the smartservice found in this
plugin.

To upgrade to this version of the plugin, follow the steps below.

Download the component from the App Market.
Deploy the plugin through the admin console of your Appian site or by copying the plugin zip file to
the plugins folder
The zip file "MS Graph Mail Poller applications.zip" contains an example Appian application and the
admin console settings needed to use the plugin. Use this to understand how to use it.
Run the upgrade SQL script 'MySQLv3.1.0 changes.sql' from the MySQL folder. These will add the
columns to the database that are not there yet, but required for this version. If you are not using
mySQL / MariaDB, use it to generate a version for your own database platform.
Update the admin console settings for the secure credential store. One of the changes is in the tenant
that should no longer contain the full URL, but only the tenant name (or id). remove the
https://login.microsoftonline.com/ part from the tenant, as well as the trailing /.
Replace the old smartservice with the new one. Remap both input and output parameters.

Takes all emails from the given account inbox (including possible subfolders) and adds entries directly to a
database table.

The original email is saved as an EML document (with attachments optionally removed).
Each email attachment is saved as its own document
The database tables store the Appian document ids, email recipients, subject and body (text and
HTML), importance and the date fields related to the email. Additionally, an immutable (within the
target mailbox) Graph message id is stored, which can be used to interact further with the email
message (outside of this plugin).
Enable/disable generation of the EML
Toggle eml persistence behaviour between including attachments, without attachments, or potentially
both
Toggle item attachment persistence behaviour between as Appian document and in-line within email
body
Toggle inline image swapping, which if enabled will convert inline HTML images to their
corresponding Appian (opaque) document URLs

The database tables store the Appian document ids, email recipients, subject and body (text and HTML),
importance and the date fields related to the email. Additionally, an immutable (within the target mailbox)
Graph message id is stored, which can be used to interact further with the email message (outside of this
plugin).

NB If you choose to store the email as an EML document and choose to have the attachments removed
from the EML document, you will not see any mailbox aliases recorded in the to, cc or bcc fields.
Otherwise, if a mailbox alias is used in the to, cc or bcc field it will appear in the EML file and database

MS Graph Mail Poller To DB Smart Service

https://login.microsoftonline.com/

fields. Mailbox aliases can be useful in identifying the type or purpose of an email received to a common
single mailbox, so it is recommended to keep attachments in the stored EML document for this reason.

Emoji's are removed from the subject and body before saving to the database. The EML file is unchanged
and will contain the emoji's. MSGraph will strip any potential unsafe HTML content from the Body if the
ContentType is HTML.

The number of emails this smart service can read per minutes will depend on the network speed and
average size of the email. It is typically between 10 and 30 per minute. If you expect a fairly constant load
of emails, using the Transaction manager to handle the emails themselves is highly recommended

Input
Data
Type

Required Description

Mailbox Text Yes
Name of the account (including domain) for which to read
emails. E.g username@domain.com

contentType Text Yes

What format to extract from Exchange: Text, HTML or
Both. Both is the standard and recommended setting;
when selected the marked up body will be saved in the
database in the BODY_HTML column and a plain text
version will be stored in BODY_TEXT.

SCS
External
System Key

Text Yes
The secure credential store key as defined in the
Administration Console. Fields for 'secret', 'tenant' and
'applicationId' are required.

Connected
By Proxy

Boolean Yes
Indicates if the connection to MS online services are
going through a proxy (only False is yet supported)

Proxy URL Boolean No URL of the proxy, not used

Proxy Port Boolean No Port to connect to the proxy, not used

Time Limit Integer No

The maximum amount of time in milliseconds to continue
processing email while the mailbox is not empty. Default
60,000 (1 minute). If more emails remain after the time
limit, they will be processed on the next execution of this
smart service. If all email is processed before the time
limit is reached the node will end early. A minimum of 1
and maximum of 59 minutes can be configured.

Message
Page Size

Integer Yes

For proper FIFO reading of emails, the page size should
be large enough to hold all emails that you will process
within the time limit, without loading a page that uses
memory unnecessarily. Using a time limit of 60000 (one
minute) and a paging size of 50 is the recommended
approach.

Node Inputs

https://community.appian.com/b/appmarket/posts/transaction-manager

Input
Data
Type

Required Description

Attachment
Folder

Folder Yes
Folder to save the email (EML) document and all
attachments into.

JNDI Name Text Yes
JNDI name of the data source that contains the tables to
save the email to

Exception
Folder
Name

Text Yes
Name of the Exchange folder to move the emails that
failed to be processed into. If not found, emails are
moved to the folder Junk Emails

Processed
Folder
Name

Text Yes
Name of the Exchange folder to move the emails that
were processed successfully into. If not found, emails are
moved to the folder Deleted Items

Generate
Eml

Boolean No
Indicates whether to generate a copy of the email as an
EML file saved as an Appian document. Default True.

Keep File
Attachments
in Eml

String No

Indicates whether to keep attachments in the generated
EML (INCLUDE), to remove them (SEPARATE) or to
keep both copies (BOTH). Default INCLUDE.
NB Setting this to SEPARATE will result in mailbox
primary email addresses rather than mailbox aliases
being recorded in the to, cc and bcc fields of the EML and
the database row.
For example, if the email is sent to complaints@test.com
and this is an alias of the comms@test.com mailbox, then
comms@test.com will be recorded in the To field. Setting
this to INCLUDE or BOTH (and therefore not stripping
attachments out of the EML via a copy of the email) will
preserve the original alias and complaints@test.com will
be stored.

Save Item
Attachments
as Doc

Boolean No

Indicates whether to store "item attachments" (e.g.
attached email messages and calendar items) from the
email as Appian documents. Default False.
NB "file attachments" are always stored as Appian
documents regardless.

Swap Inline
Images

Boolean No

Indicates whether to swap inline HTML images in the
email body to their corresponding Appian (opaque)
document URLs. If enabled, this additionally populates
the BODY_SWAPPED_IMAGES field with the updated
HTML body. Default False.

Debugging

If debugging is required, add the following to your log properties file
(<APPIAN_HOME>/deployment/web.war/WEB-INF/resources/appian_log4j.properties).
log4j.logger.com.appiancs.msgraphmail=DEBUG

NB If you have a webserver in front of Appian, make sure to put this on the webserver as well in the
documentRoot.

Output
Data
Type

Description

Error Occurred Boolean TRUE if an error occurred while processing emails

Error Message Text Detailed message of the error

Time Limit
Reached

Boolean
TRUE if processing was halted because of passing the time limit set
via input parameters

Mail Count Number
Number of emails successfully processed during the smart service
execution

Error Count Number Number of errors thrown during the smart service execution

Node Outputs

