Base64DB Instructions

Base64QueryToDocument

Inputs
Outputs
Usage Example

Error Handling
DocumentToBase64Database
Inputs

Outputs
Usage Example

Base64QueryToDocument

This smart service will convert SQL statement results from Base64 to an Appian document, returning a
document Id.

Inputs

"+ Configure Get Basebd Document from Database

General Data | Forms Scheduling Assignment

inputs | Outputs

Node Inputs [i] Map the value(s) for the inputs of the noc

& New Input

- Document Name * (Text)
.. Format * (Text)

- Jndi Mame * (Text)

.. 5gl Statement * (Texl)

. Target Folder * (Folder)

e Document Name - what filename the document should be saved as
e Format - the file type for the document to be saved - ex, “txt”

e Jndi Name - the jndi name of the database where the query should be executed
against. - ex: “jdbc/AppianBusinessDB”
e Sql Statement - the string SELECT statement to execute against the database. It

should return a single value of a base64 string. Ex: “SELECT base64_string from
table_name where id = 24;”
e Target Folder - The Appian folder where the document should be saved to

Outputs

"+ Configure Get Base64 Document from Database

General Data Forms Scheduling Assignment | E

Inputs | Outputs

Node Outputs |i] Save node data to Process Variables fol

& New Custom Output
v Results
Document (Content Document)
Error Message (Text)
...Is Emor (Boolean)

¥ Custom Outputs
i..No Custom Cutputs have been configured

e Document - the document with converted base64 string (plaintext)
e Error Message - error message. Null if there Is Error is false.
e Is Error - boolean flag that indicates whether there was an error

Usage Example

Execute the following SQL script:

CREATE TABLE employees_test (
id int,
base64str varchar(1000)
)
INSERT INTO employees_test VALUES (1, 'ZW5jb2R1ZCBOzZXho');

Create a document folder where you want the converted document to be saved.

Customize the smart service node as follows:

Document Name - plaintext

Format - txt

Jndi Name - the jndi name of the database

Sql Statement - SELECT base64str from employee_test WHERE id = 1;
Target Folder - Folder created above

Run the smart service node. Navigate to the target folder and a file named “plaintext.txt” should
exist. Open the file. It should contain the text “encoded text”, which is the decoded base64
string inserted into the database.

Error Handling

Nonexistent column name - error message “unknown <column_name> in field list”
SQL Statement returns multiple rows - error message “Your SQL statement returns more than one
row. Please revise the statement to return only one row.”

e Malformed SQL statement (does not begin with “select <column_name> from”) - error message
“Your SQL statement is invalid. Please use the format: SELECT <BASE64_COL_NAME> FROM
<TABLE_NAME>"

DocumentToBase64Database

This smart service can receive an Appian document id, convert to a base64 string and save it directly to the
database.

Inputs

"+ Configure Insert Document as Baseb4 into Database
General I Data | Forms | Scheduling | Assignment | Exceptions |

| Inputs | Outputs |

Node Inputs |i] Map the value(s) for the inputs of the node

& New Input
--Jndi Name = (Text)

Sql Statement * (Text)

Dynamic inputs

e Jndi Name - the jndi name of the database where the query should be executed
against. - ex: “jdbc/AppianBusinessDB”

e Sql Statement - the string SQL Insert statement which is formatted to include placeholders for
variables - ie “INSERT INTO table VALUES(:name)”

e [ANY DYNAMIC INPUTS] - Additional inputs, named as placeholders in the SQL statement

Outputs
"t Configure Insert Document as Baseb4 into Database

General | Data | Forms | Scheduling | Assignment | |

Inputs | Outputs

Node Outputs |i] Save node data to Process Variables fo

@ Mew Custom Qutput
v Results
.. Error Message (Text)
... |s Emmor {Boolean)

v Custom Qutputs
i..Mo Custom Outputs have been configured

e Error Message - error message. Null if there Is Error is false.
e Is Error - boolean flag that indicates whether there was an error

Usage Example

Execute the following SQL script:
CREATE TABLE book (
base64str varchar(1000),
title varchar(100)
)

Create a text file with the words: “encoded text”. Upload this file to Appian and note the
document ID.

Configure the smart service node with the appropriate JNDI name for the Jndi Name input.

For the Sql Statement input, use:
e INSERT INTO book VALUES (:documentId, :title);

Add an ACP named documentld of type Number (Integer). The value should be the document
ID of the document uploaded above. This ACP must be named documentld for the node to
complete the conversion.

Add an ACP named title of type Text. The value should be:
e “Book Title”

NOTE: the order of the dynamic inputs is not important.

Run the smart service. Navigate to the book table. It should appear as follows:

— UL query:

SELECT =
FROM "book”
LIMIT O, 30

(i) 'May be approximate. See FAQ 3.11

Show : |30 row(s) starting from record # ICI
in | horizontal v| mode and repeat headers after cells

4 T » %aseﬁdstr title
1 & | ZW5b2RIZCBOZXh0 Book Title
Check All / Uncheck All With selected: & X

The column base64str is the base64 encoding of the file’s text (encoded text). Note that the
title column is unaffected.

