
Advanced Document Templating

The plugin provides a Smart Service to create docx documents defining the dynamic structure within a docx template. The plugin is

based on the library "XDocReport" https://code.google.com/p/xdocreport/ .

How to Configure the 'DOCX From Dynamic Template' Smart service

Data Input Tab

Input Data

Type

Required Multiple Description

Docx Template Document Yes No Docx Document that is definining the structure of the document to be

generated.

Xml Data

Model

Any Type Yes N/A Xml String containing all the values that will be placed into the docx

documen. Please follow 'How to use it' section to define it correctly.

Images Any Type No N/A Dynamic CDT containing images that will be placed into the generated docx

document. Please follow 'How to use it' section to define it correctly.

Create New

Document

Boolean Yes No Whether to create a new document, or update an existing one.

New Document

Name

Text No No If creating a new document, use this as the name.

New Document

Desc

Text No No If creating a new document, use this as the description.

Save In Folder Folder No No If creating a new document, save into this folder.

Existing

Document

Document No No If not creating a new document, overwrite this one.

https://code.google.com/p/xdocreport/

Data Output Tab

Output Data

Type

Multiple Description

Success Boolean No Returns false if an error has occurred. Save this value to a process variable to enable

exception processing on the subsequent activity in the process flow.

Error Message Text No Lists the text of the error message if one occurred.

New Document

Created

Document No A created DOCX Document

How To use the 'DOCX From Dynamic Template' Smart service

Defining a docx Template

How to design a report: https://code.google.com/p/xdocreport/wiki/DocxDesignReport#Create_with_MS_Word .

Defining 'XML Data Model' data input

The expected Xml String passed into DynamicCdtDataModel Data Input must follow these principles:

1. The XML String has only one main element (in the example is "project") which is the root of all the mapped values

2. Within the root element there can be simple elements or multiple elements:

o Simple elements (in the example is "name") are simple placeholders in the DOCX template. Their name is the same as

the placeholder name in the DOCX template

o Multiple elements (in the example is "developer") are placeholders that are mapped in the DOCX template with

dynamic structures (such as grids). Their name is the same as the placeholder name in the DOCX template and its field

attributes have the same name as the sub placeholders in the dynamic structure (for instances, if the multiple elements

is mapping a grid, the fields of the multiple elements will have the same name of the column placeholders of the grid).

Multiple elements must be of type type!CDT from the data management tab. For instance, the value of a multiple

element can be the output of a query rule/query entity.

To test the plugin with the docx template provided as example you can use the following example of 'Xml Data Model' definition:

https://code.google.com/p/xdocreport/wiki/DocxDesignReport#Create_with_MS_Word

="<project>

 <name>This is a simple placeholder</name>

 <developer name='John' lastEmail='Smith' mail='smith@email' day='10-10-2014' />

 <developer name='Frank' lastEmail='Brown' mail='frank@email' day='10-10-2014' />

</project>"

Defining 'Images' data input

This custom Smart Services allows you to place images (and dynamic arrays of them) into the docx document. This input parameters

expects a dynamic CDT as input where all the attributes are named as the name of the placeholders and contain an Appian uploaded

image document (or an array of them) as value. To test the plugin with the docx template provided as example you can set the input of

this parameter as follow:

={logo:cons!ADT_IMAGE}

The costant "ADT_IMAGE" should be of type document (multiple) and contain more than one image.

Troubleshooting

Here below a list of possible errors during the execution of the plugin which can be challenging to troubleshoot:

"The entity name must immediately follow the '&' in the entity reference."

The data input "Xml Data Model" of the Smart Service is expected to be an XML string of all the data that will be placed into the

generated DOCX document. Since it's an XML string, it's not expecting to find the char "&" (or other XML protected chars like “<” or

“>”) within the value of an xml tag. In this case the solution should be using the fn!toHtml every time a value from a pv! (or ri!) is

placed in the text string that is the XML. This will substitute the special chars with the HTML code of them (avoiding them to break

the XML syntax otherwise) but will still show correctly in the generated DOCX. For instance, if the content of a pv! (or ri!) is “&<>”

this will happen:

fn!toHtml("&<>")  &<>

