
ps-plugin-ExcelTools 

This plug-in allows you to export 

1. Export SQL data to Excel 

2. Export CDT data to Excel 

3. Export Portal Report to Excel 

 Smart Service 

 Servlet 

4. Export SQL data to CSV 

5. Parse Excel to CDT 

6. Merge Excel Documents 

7. Export Process Metrics to Excel 

8. Export Process Model Details to Excel 

9. Function queryappianlogs 

Modules 

Export Portal Report to Excel Smart Service 

This exports an Appian report to Excel workbook. You can define the Sheet number 

where the data needs to be populated. 

Export Sql to Excel Smart Service 

This takes an SQL statement and popluates the data into the excel workbook. You can 

specify which tab to write the data to. Tabs are zero based index with first tab =0. You 

need to have a JNDI defined and the value of the JNDI needs to be passed to this 

plugin. 

In addition, you can write data to any arbitrary cell by defining an array of cell numbers 

e.g. {"A1","B6","Al4"} and passing values to these cells. This is a one-to-one cell data 

population. 



Currently tested on MySql and Oracle database 

Known Issues: If you are using this with Oracle where the columns are created with 

lower case and require double quotes to be appended to the SQL, it doesnt work. 

Export Report Servlet 

A servlet that can be used inside an a!safeLink to simulate export to excel of Tempo 

reports that rely on getportalreportdatasubset(). 

Tips 

You need multiple of these nodes to write to different sheets/tabs of the excel report. 

The excel report template MUST have these sheets defined otherwise the node will fail 

You can configure graphical chart on an excel report for a defined set of rows/columns 

and when the data is populated in these cells, the data should automatically get 

translated into the graph (as per your configuration on the template) 

Use multiple of these to combine Appian and RDBMS data where required. For e.g. You 

can write the data from Appian report followed by SQL data in the next tab. 

Usage guide 

Export SQL to Excel Smart Service 

Cell_Keys : Array of cell keys where info needs to be written to e.g: {"A1","B1","C1"} 

Cell_values Array of cell values where info provided will be written (for the 

corresponding values in Cell_Keys) e.g: {"Apple",100,"10/Oct/2012"} 

Document_name_to_create Name of the document to be generated. 

Document_save_directory Folder to save the generated document 

Document_to_overwrite If a document generated should overwrite another existing 

document, use this. Useful if you are invoking this to write to different sheets of an excel 

document. 



Excel_base_template The excel template on which the output will be written to 

include_header_row Boolean true() or false() allowing header row to be written 

Jndi Name Name of the JNDI (Quick help: Look at your database node to get the JNDI 

name.) This will be something like java:/jdbc/AppianDS 

Sheet_number Excel workbook Sheet number to write to. First sheet is 0. If your excel 

has only one sheet, this should be 0 (required) 

SQL SQL to use or query. You can use an SQL that contains Select * here. If using Stored 

Procedures, avoid output parameters. If an output parameter cannot be avoid, make 

sure the CALL statement names all @ values (i.e. do not pass in only @) 

Starting_cell Cell to start writing the report output. For e.g. if you want the output of sql 

to start from cell "A4" onwards, specify "A4" here. 

Export Portal Report to Excel Smart Service 

Cell_Keys : Array of cell keys where info needs to be written to e.g: {"A1","B1","C1"} 

Cell_values Array of cell values where info provided will be written (for the 

corresponding values in Cell_Keys) e.g: {"Apple",100,"10/Oct/2012"} 

Document_to_overwrite If a document generated should overwrite another existing 

document, use this. Useful if you are invoking this to write to different sheets of an excel 

document. 

Excel_Base_Template Excel template to be used 

Filter_Column Column name where a filter needs to be applied 

Filter_Value Value of the filter that needs to be applied. 

Include_header_row Boolean true() or false() allowing header row to be written 

New_Document_Folder Folder to save the generated document 

New_Document_Name Name of the document to be generated. 

Report Name of the Appian report (select) that will be written to the excel file. 

Report_context Reporting context (if applicable) 



Starting_cell Cell to start writing the report output. For e.g. if you want the output of sql 

to start from cell "A4" onwards, specify "A4" here. 

Sheet_number Excel workbook Sheet number to write to. First sheet is 0. If your excel 

has only one sheet, this should be 0 (required) 

Export Portal Report to Excel Servlet 

Use SAIL to create an a!safeLink to the following 

URL: <host>/plugins/servet/excelReport?reportId=... 

Pass in the following parameters to the above url like <paramName>=<paramValue>. Use & to 

separate additional param/value pairs after reportId 

 reportId (required) 

 filename - if not specified, filename will be "Appian_Data_Export" 

 context - a semicolon-delimited list of context IDs 

 startIndex - if not specified, will be 0 

 batchSize - if not specified, will be -1 (meaning all rows) 

Example: http://localhost:8080/suite/plugins/servlet/excelReport?reportId=23&filename
="this_is_awesome" 

Export Portal Report to Excel Servlet v2 

This servlet adds WYSIWYG functionality to the original Export Portal Report to Excel 

Servlet. The values displayed in the Portal Report are exported to Excel, e.g. correctly 

formatted User and Group names (rather than IDs). 

Use SAIL to create an a!safeLink to the following 

URL: <host>/plugins/servet/excelReportv2?reportId=... 

Otherwise usage is the same as Export Portal Report to Excel Servlet. 

Example: http://localhost:8080/suite/plugins/servlet/excelReportv2?reportId=23&filena
me="this_is_awesome" 

Export SQL to Flat File Smart Service 

Delimiter The separator between data fields in the file. 



Document_name_to_create Name of the document to be generated. 

Document_save_directory Folder to save the generated document 

Document_to_overwrite If a document generated should overwrite another existing 

document, use this. Useful if you are invoking this to write to different sheets of an excel 

document. 

End_of_line The character to be used as a line break. For a carriage return use char(13), 

for line feed use char(10) and for CR/LF use char(13)&char(10). 

Extension The file extension of the file generated. 

include_header_row Boolean true() or false() allowing header row to be written 

Jndi Name Name of the JNDI (Quick help: Look at your database node to get the JNDI 

name.) This will be something like java:/jdbc/AppianDS 

SQL SQL to use or query. You can use an SQL that contains Select * here. 

Parse Excel Spreadsheet to CDT, originally written by Lizzie. 

Parse Excel Spreadsheet to CDT Smart Service 

 Blank rows are ignored 

 Limited to first 100,000 rows 

 Stops processing if 500 consecutive blank rows are found 

 To keep leading zeros in an integer (for example zip codes), add a leading 

apostrophe to the column data and it will be treated as a string. 

Data Tab 

Input Data Type Required Multiple Description 

Excel Doc Document Yes No The Excel document to parse 

Sheet Number Integer No No The worksheet number to parse 



Input Data Type Required Multiple Description 

CDT Any Type No - The CDT type to populate 

Output Data Type Multiple Description 

Return CDT Any Type - The populated CDT 

Error Occurred Boolean No Whether an error occurred 

Error Text Text No The error message 

queryappianlogs() Custom Function 

This Custom Function allows to perform an SQL statement against an Appian CSV log 

file. Only the following SELECT statement is supported: 

SELECT [DISTINCT] [table-alias.]column [[AS] alias], ... 

FROM table [[AS] table-alias] 

WHERE [NOT] condition [AND | OR condition] ... 

GROUP BY column ... [HAVING condition ...] 

ORDER BY column [ASC | DESC] ... 

LIMIT n [OFFSET n] The name of the table must correspond to the name of the CSV log 

to query. The function is limited to the first 1000 rows. 

Input Parameters 

Input 
Data 

Type 
Required Multiple Description 

sqlStatement Text Yes No SELECT SQL Statement to perform 



Input 
Data 

Type 
Required Multiple Description 

subFolder Text No No 
Specify with a value if the CSV log file is in a log subfolder. Accepted 

values: "audit", "data-metrics", "perflogs" 

columnTypes Text No Yes 

Ordered list (based on the column order in the SQL Statement) types 

the column will be formatted. Accepted values: "Int", "Double", 

"Date", "Time", "Timestamp", "String", "Boolean". If Set it must have 

the same amount of values as the number of columns in the SQL 

Statement 

Output Parameter 

The returned parameter is a CDT made of the following fields: 

{ 

success: Boolean value, based on the success of the SQL Statement execution 

errorMessage: Text value, describing an SQL error (if any) returned during the SQL 

Statement execution 

data: List of CDT, where each field corresponds to the column name (or alias assigned). 

Field type corresponds to the ordered values > set in che input "columnTypes", or Text 

for all of them otherwise 

} 

 


