
3

Why talk about DevOps
and low-code?

4

How low-code
advances DevOps.

6

How DevOps is changing low-
code platforms.

7

Low-code across the
 DevOps cycle.

20

The bigger picture: low-code
infrastructure and DevOps.

21

From dysfunctional separation
to efficient collaboration.

DevOps and Low-Code:
Better Together
Best practices for combining the strengths
of DevOps and low-code to drive business advantages.

appian.com | 2

DevOps

A set of principles and practices to
meet common objectives of software
development (Dev) and IT operations
(Ops). DevOps has caused a cultural shift
by fostering collaboration between these
traditionally separate groups.

Cross-functional DevOps teams work on
solving internal development problems
and eliminating bottlenecks to the rapid,
frequent, and reliable delivery of high-
quality software.

Low-Code

A set of development tools, environments,
and platforms for building software that
requires minimal coding. Low-code platforms
instead use visual interfaces (drawing tools,
wizards, model- and template-driven design,
etc.) with automatic code generation.

Low-code is being adopted both by
developers (for work acceleration) and
business experts (for skill enablement).

http://appian.com

appian.com | 3

Why talk about DevOps and low-code?

1. ZDNet, “DevOps adoption almost doubles in five years, Covid crisis accelerated adoption,” February, 2021.
2. Gartner Risks and Opportunity Index: Low-Code Platforms,” Fabrizio Biscotti, Paul Vincent, Jason Wong, Laurie Wurster (June 2021)

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Wherever you are with DevOps and low-code, this eBook will help you combine their strengths.
Maybe your organization has a dedicated DevOps team, or maybe a senior engineer has taken on
DevOps responsibilities. You might have engineers and business analysts already using low-code
methods, or you might be researching and evaluating low-code platforms. In any case, leveraging
the combined strengths of DevOps and low-code will increase your success and lower your
operating costs.

DevOps and low-code have
complementary goals.

DevOps is about optimizing the software
engineering process so you can deliver
applications to users faster, compressing time
to value. Low-code is about building software
faster so it enters DevOps pipelines sooner. It’s
also about giving organizations the choice of
mobilizing a wider portion of their workforce
in developing, testing, and updating software
applications and tools—accelerating pace and
potentially off-loading some routine tasks from
DevOps teams.

Their objective is to deliver
better results, faster.

Leading-edge DevOps is expanding its focus
to include quality engineering as well as speed.
Today’s goal is to get better software to users,
fast. Leading-edge low-code platforms can
handle complex challenges with increasingly
sophisticated tools for software quality,
standardization, and disciplined development.
These low-code platforms provide workflow
automation and support agile methods and
efficient DevOps practices for the entire
software life cycle.

They both have a growing
presence across enterprises.

DevOps principles and methods have been
adopted by 74% of enterprises, according to
research reported in a 2021 ZDNet article.1
Meanwhile, Gartner® forecasts that “by
2025, 70% of new applications developed
by enterprises will use low-code or no-code
technologies, up from less than 25% in 2020.“2

http://appian.com
https://www.zdnet.com/article/devops-adoption-almost-doubles-in-five-years-covid-crisis-accelerates/
https://www.gartner.com/en/documents/4003142/risk-and-opportunity-index-low-code-application-platforms

appian.com | 4

As much as DevOps has already improved software engineering processes,
it can still make even more of an impact. There are two bottlenecks to
smooth-running pipelines that can be cleared by coupling enterprise low-
code with DevOps: the coding bottleneck and the testing bottleneck.

1. Eliminate the coding bottleneck.

The efficiency of DevOps relies partly on an efficient stream of high-quality
code entering continuous integration/continuous delivery (CI/CD) pipelines.

During the pandemic, many organizations embraced
low-code platforms to build and deploy new apps
fast. These experiences will drive most development
shops to adopt low-code tools and more. Expect to
see new hybrid teams emerge, with business users
and professional developers building apps together
with low-code tools built on cloud-native platforms.

Predictions 2021: Software Developers Face Mounting Pressure,

Forrester, October 2020.

Low-code platforms help by doing the following:

 Enabling IT developers to accelerate the code stream using, for example,
prebuilt connectors that eliminate data silos, acting on data wherever it
resides without need for migration. Developers gain speed from reusable
objects, such as workflows, business rules, integrations, and APIs. With a
best-in-class platform, they can rapidly deliver automation solutions that
combine classic business process management and case management
with cutting-edge capabilities such as machine learning, process mining,
AI-based intelligent document processing, and robotic process automation.

 Enabling business experts to contribute to the code stream by
working with the same powerful capabilities as developers, except using
visual tools (for example, drawing processes instead of coding them),
templates, UI frameworks, and guided design flows. Low-code platforms
also support strong collaboration, complementing the agile practice of
breaking work down into sprint-length tasks performed in parallel by
different teams. Any contributor can readily see how an in-progress
application’s functions are mapped out without having to decipher
lines of code.

 Enabling developers and collaborators to deliver secure applications
with minimal or no effort. Enterprise-grade low-code platforms enable
“software, safer, sooner” by baking security into development tools and
automating the delivery of secure software—including native rendering
on mobile devices—without slowing the process down. At each step in the
development cycle, objects and the application are automatically tested for
security issues so they can be addressed as soon as they are identified.

How low-code advances DevOps.

http://appian.com
https://www.forrester.com/blogs/predictions-2021-software-developers-face-mounting-pressure/

appian.com | 5

2. Eliminate the testing bottleneck.

DevOps’ success at increasing the pace of software development,
along with added demand for speed coming from accelerated digital
transformation, can create a pile-up of work for quality testing.

Low-code platforms help by doing the following:

Supporting the shift-left trend in software testing aimed at finding
and fixing code defects earlier in the development process when they’re
exponentially less complex and less expensive to address.

Putting more hands on deck by enabling business experts, such as
product owners and customer support, to play a role in authoring/
updating tests and evaluating results.

Expanding the focus of testing beyond code validation to a wider
range of software functionality. With business experts involved in
testing, it becomes feasible to assess more aspects of user experience
and confirm business value earlier on.

Quality engineering (QE) has traditionally lacked
the tools needed to keep pace with digital
transformation. Many QE teams struggle with
complex, brittle automation frameworks and slow
manual testing which create serious bottlenecks to
DevOps adoption ... we need to shift our focus away
from quality assurance as a task you perform late in
the software development life cycle in favor of quality
engineering practices throughout the entire life cycle.

Low-Code Automated Software Testing Drives DevOps,
Devops.com, April 2021.

http://appian.com
https://devops.com/low-code-automated-software-testing-drives-devops/

appian.com | 6

How DevOps is changing low-code platforms.

IT organizations are embracing low-code platforms for adding more enterprise-grade features, including
support for DevOps practices. Robust security and native integration with CI/CD tools are also raising the
profile of low-code—these capabilities increase organizations’ confidence that low-code can be a force
multiplier in the increasingly competitive race for software-enabled business advantage.

Low-Code Features
• Visual programming tools with

real-time feedback.

• Native apps for mobile devices.

• Prebuilt integration connectors.

• Built-in rule and decision capabilities for
capturing business logic.

• Powerful and easy-to-use tools for
modeling business workflows.

• Collaboration tools that help teams
work efficiently.

• Push-button deployments.

DevOps Principles
• Deliver working software to users sooner

to accelerate feedback and time to value.

• Reduce risk by deploying and
integrating smaller amounts of
functionality more often.

• Plan for operational requirements from the
earliest stages of software development.

• Improve software quality by shifting
the majority of testing to the build stage.

• Put cross-functional teams to work finding
and eliminating process bottlenecks.

• Automate as much of the process
as possible.

Support for DevOps is
increasingly woven into the
fabric of enterprise-grade

low-code platforms.

Robust security at platform,
operational, and application levels.

Built-in regulatory compliance.

Automated testing.

Easy integration with
external CI/CD tools.

Application- and
system-level monitoring.

http://appian.com

appian.com | 7

Low-code across the DevOps cycle.

Enterprise low-code platforms support and enhance DevOps at every
stage of software development.

 Build: Empower more people to participate in small teams
working simultaneously and collaboratively on software
development projects.

 Test: Discover issues as soon as possible by testing as you build.

 Deploy: Accelerate feedback by getting valuable functionality
into the hands of users faster.

 Monitor: Continuously check the health and quality of your
application and environment as you expand functionality, deploy
changes, and improve the user experience.

Low-code acceleration.

20x faster development of native or mobile web apps.

10x faster development of fully integrated artificial intelligence (AI) apps.

Just 8 weeks for nonprogrammer to build first app (Appian Guarantee).

http://appian.com

appian.com | 8

Build stage.

Low-code advantages for DevOps.

Low-code platforms support agile and DevOps methods by
empowering more people to participate in small teams working
simultaneously and collaboratively on software development projects.
They accelerate development with ready-made integrations that
overcome data and system silos. Speed also comes from integrated
design-time testing and automating numerous routine development
functions. And since low-code platforms make it easy to reuse objects
or logic and guarantee backward compatibility on platform upgrade,
developers can spend less time maintaining existing applications and
more time adding new functionality.

An example of visual programming in Appian. Developers can quickly build out their
interfaces with drag-and-drop capabilities.

Case study

Bankhaus von der Heydt
Challenge: One of Europe’s oldest banks, Bankhaus von der
Heydt was shifting its focus from wealth management and
private banking to institutional asset servicing, including
blockchain and cryptocurrency. A major impediment to this
plan: traditional software development platforms and methods
were taking too long to create the software applications needed
for new business requirements and dynamic fintech markets.
Existing software interfaces were neither user friendly, modern,
nor mobile.

Solution and results: With the Appian Low-Code Platform,
Bankhaus von der Heydt has linked brokerage and crypto
services with its core banking system.

Highlights:

• One day to customize partner solutions.

• Full partner visibility into the integrated Know Your
Customer process.

• Ability to offer data APIs and other new digital services to
professional customers.

http://appian.com

appian.com | 9

Key features.
• Visual programming tools for designing interfaces, queries, process

flows, and decisions (e.g., modeling processes by drawing them,
using drag-and-drop to assemble fully interactive interface elements).

• Simplified automation of complex business processes
with low-code business process management that unifies
different types of people, data, systems, and technologies
(e.g., decision rules, AI-based document processing,
robotic process automation, case management).

• Built-in templates and patterns, reusable business logic and
workflows, and guided object generation that enable fast starts.

• Prebuilt connectors that make it simple to integrate with a broad
range of data sources, systems, and web services (e.g., Salesforce,
SAP, AWS, Microsoft Dynamics, Amazon Alexa, Google Assistant).

• Guided design recommendations, including access and data
security, and best practices for easier future maintenance that
are fit for purpose, model driven, and provided in real time.

• Automatic generation of build-once/use-anywhere code that
runs natively on the web and virtually any mobile device; seamless
processes can span and freely wander across multiple end-user
devices while maintaining compliance and accessibility standards.

• Simplified incorporation of identity authentication and access
management services (e.g., support for all identity providers,
including Kerberos; multi-IdP selection; device keychain passwords;
adherence to AppConfig Community guidelines and standards for
enterprise mobility management control of mobile security, policy, and
provisioning; Department of Defense information network access).

http://appian.com

appian.com | 10

Best practices.

 Get key participants and other stakeholders involved early.
For example, using low-code interface design tools, business
analysts can mock up forms with the exact content, sequence,
and look and feel they want. There’s complete clarity when they
then hand them off to another team member for refinement.

 Use/adapt the low-code platform’s application delivery
governance model (standards, measurements, process
alignment, etc.) or extend your organization’s existing
governance to low-code development. Organizations should
look for a lightweight, effective way to govern their delivery
teams. This model provides delivery teams with the standards,
measurements, and process alignment needed to develop
quality low-code applications quickly and efficiently.

 Agree on Definition of Ready and Definition of Done. All
development teams and stakeholders need to align on a
Definition of Ready (criteria user stories must meet before
development teams start working on them) and a Definition of
Done (criteria development work must meet before it is released
to production).

 Decide what can be reused to accelerate delivery and boost
productivity. At sprint 0, teams should identify business objects
that could be reused within the same project or by other
projects. Follow good naming conventions that are clearly
documented so they can be understood by all teams. Share
with other apps on the low-code platform as utilities, with
external apps as web APIs.

 Clean up as you build. Use comments to describe and explain
logic and decisions. Delete unnecessary configurations,
rules, variables, and objects that might complicate software
maintenance.

 Embed testing into development. The majority of testing should
be performed during the build stage as part of the development
workflow for each story.

 Implement a peer review process. Encourage developers to
get feedback ahead of formal application reviews and other
internal governance checkpoints. It’s a great way to scale and
avoid over-tapping governance resources, and it can help less
experienced developers up-level their skills faster. Low-code
platform features like collaborative packages facilitate early,
frequent peer review.

http://appian.com

appian.com | 11

Test stage.

Low-code advantages for DevOps.

Low-code platforms support the DevOps trend toward earlier, more
frequent testing to discover issues as soon as possible. They provide
live test-as-you-build tools at the unit level while also automating a
full range of tests (unit, UI, performance) for code deployed to test
environments and production environments.

Testing in Appian helps you verify changes throughout the development life cycle to
catch issues earlier and fix them faster.

Case study

Telus
Challenge: Preparing to launch 5G to more than 10 million
subscribers, Canadian telecom company TELUS conducted an
internal audit of all of its digital systems and tools. The company’s
expectation was that 5G would bring an exponential increase in
the volume of application development activity. Here’s what the
audit found: to support rapid growth, TELUS needed a platform that
would increase efficiency, scalability, connectivity, and automation.

Solution and results: In just 12 weeks, using the Appian Low-
Code Platform, TELUS developed an end-to-end workflow
management tool to automate and maintain all build activities
surrounding the 5G network. Ten thousand business activities now
flow through the platform, which is accessible from any device.

Highlights:

• Robotic process automation interfaces with legacy systems
and speeds development by 10x.

• Five legacy applications collapsed into a cohesive process,
eliminating 20,000 user email notifications per month.

• Eleven legacy and external systems will be integrated upon
project completion.

http://appian.com

appian.com | 12

Key features.
• Unit testing of the smallest testable pieces of the

application, such as object expression rules, to
ensure each piece performs as expected under
various conditions.

• UI testing to see if the application is performing
as it should from a user’s perspective
(responsiveness, navigation, etc.).

• Performance testing to see if the application
will scale and behave as expected in various
production scenarios, including peak usage.

• Support for third-party integration testing (e.g.,
Selenium, Cucumber, FitNesse) and load testing
(e.g., Locust).

• Comprehensive health checks covering design
patterns, performance risks, user experience, and
configuration issues.

Low-code platforms
support the DevOps
trend toward earlier, more
frequent testing to discover
issues as soon as possible.

http://appian.com

appian.com | 13

Best practices.

 Develop a testing strategy. Decide which types of testing you’ll
need for your project and when/where it’s worthwhile to set up
automated testing.

 \ Test in small increments as you build. For example, use live
testing inside design objects, such as integrations or decisions.
Make sure to test realistic use cases to cover the various ways
a rule, decision, or integration could be used.

 Automate common/valuable regression tests. Save test cases
as you build to simplify automated regression testing later on.
Perform regression testing after deploying changes to the test
environment to uncover potentially unintended side effects of
changes to reused rules. These regression test cases are also
useful as inline documentation to describe expected behavior
and results, helping peer reviewers and other developers
understand what a rule should do.

 Track quality metrics. Measure progress as you iterate
toward higher performance to make sure you’re investing in
the right areas.

 Invest in root cause analysis. Analyzing the causes of high-
priority bugs will help identify potential improvements to your
development and quality processes.

 Perform health checks in a production-like environment.
Baseline testing should mirror the data volume and concurrent
user activity volume you expect in production. Stress testing
pushes volume beyond expectations (1.5x, 2x, etc.).

 Give end users the opportunity to perform hands-on testing.
Include all relevant user groups (by personae, geographic
regions, etc.).

http://appian.com

appian.com | 14

Deploy stage.

Low-code advantages for DevOps.

Low-code platforms support the DevOps principle of frequently
deploying small sets of software changes to test environments and
ultimately production and other target environments. This strategy
accelerates feedback for development teams by getting valuable
functionality into the hands of users faster. It also reduces the risk of
introducing complicated object dependencies that can be difficult to
resolve late in the cycle.

The Appian platform makes it easy to improve your applications
with incremental releases.

Case study

Aviva
Challenge: After 350 years of growth and M&A activity,
Aviva, the UK’s largest insurance provider, was suffering
from application sprawl. Front-line staff had to log in to as
many as 22 different systems to resolve just one customer
service request. The situation was not only an impediment
to the company’s efforts to deliver an outstanding customer
experience, it was also a constant source of productivity loss
and dissatisfaction for employees.

Solution and results: Aviva has sped up its customer service
response by 9x. Using the Appian Low-Code Platform, the
company unified 22 systems into a single solution for its call center.

Highlights:

• A single screen gives agents a 360-degree view of each
customer, including every policy.

• Robotic process automation bots now handle repetitive
work, allowing agents to focus on delivering outstanding
customer experiences.

• 25% increase in same-day settlements.

• 530% increase in three-day settlements.

http://appian.com

appian.com | 15

Low-code platforms support
the DevOps principle of
frequently deploying small
sets of software changes to
test environments.

Key features.
• Collaborative tools, visible to all users with privileges, make it easy

to share work in progress, see each others’ changes, and obtain
assistance or feedback from teammates or members of other teams.

• Comparison tools highlight differences between new and previously
deployed code and provide insights for making efficient choices about
what to deploy.

• Validation steps packaged with security summary warnings (e.g.,
objects with missing precedents, untested rules, inappropriate role
permissions) and tools for making on-the-spot fixes.

• Push-button deployment to test and production environments, with
real-time status and successful completion feedback, per-environment
administration controls, and the ability to trigger custom workflows.

• APIs for initiating deployments programmatically to an external CI/CD
orchestration tool, such as Jenkins; set up once and run the same way
for future deployments, saving time and avoiding manual errors.

• Easy-to-review deployment history with drill-down detail about the
changes made and people involved (e.g., requestor, approver).

http://appian.com

appian.com | 16

Best practices.

 Decide if you’re going to use built-in deployment tools or
third-party CI/CD. If you don’t already have in-house DevOps
expertise, consider starting with the low-code platform’s
deployment capabilities. You can always switch to a different
CI/CD tool later.

 Determine the people/roles that need to participate in the
deployment process. Early on, identify and resolve dependencies,
such as required change request approvals, environment-specific
integration credentials, and user provisioning.

 Run a comprehensive health check as part of your pre-
deployment checklist. Find any issues with design patterns,
performance risks, user experience, and configuration before
pushing software to production environments.

 Establish recovery processes. It’s rare for a deployment to fail
or have major issues, but you need to be ready just in case.
Because low-code development is so fast, it’s often better to
apply an application hotfix (a new code delivery aimed only
at fixing the problem) or “rollback” by rolling forward than to
actually revert to a previous delivery.

http://appian.com

appian.com | 17

Monitor stage.

Low-code advantages for DevOps.

Low-code platforms provide user-friendly ways of continuously
checking the health and quality of your application and
environment as you expand functionality, deploy changes, and
improve the user experience. They provide built-in monitoring
tools and also integrate with standards-based third-party tools.

The health dashboard in Appian is a central place to review adherence to best
practices and application performance.

Case study

US Air Force
Challenge: Acquisition contract writing was taking too long.
To speed it up, the Air Force needed to standardize and unify
disparate systems, including contract management for all offices
and seven legacy contract writing applications. The solution had
to meet high expectations: senior leadership set a goal to shave
a collective 100 years from the service’s acquisition schedules.

Solution and results: In less than nine months, working with
Appian business process management technology and low-
code development, the Air Force designed, developed, and
deployed its new cloud-based unified Contracting-Information
Technology (CON-IT) application.

Highlights:

• Hosted in an Impact Level 4 (IL4) data center, which covers
mission-critical data, including Controlled Unclassified
Information (CUI), which under law or policy requires
protection from unauthorized disclosure.

• Increased efficiency, reduced costs, and enhanced
functionality while enabling the service to make statutory
changes faster.

http://appian.com

appian.com | 18

Key features.
• A centralized view of application status (e.g.,

process activity and completion, errors, warnings,
test coverage).

• Streamlined auditing, tracking errors and
performance issues, and troubleshooting via easy
access to process history.

• Application performance monitoring to
validate an application is running as expected
(e.g., efficient, functional, not producing errors)
and providing business value and a good user
experience.

• System monitoring to track system performance
and resource usage. Low-code platforms

provide user-friendly ways
of continuously checking the
health and quality of
your application.

http://appian.com

appian.com | 19

Best practices.

 Set up agreements, processes, and tooling to proactively
monitor key functionality in your applications. For instance, you
can use built-in business process management and workflow
tools to initiate actions, reviews, and follow up.

 Familiarize yourself with key log files. For instance, design error
logs capture every expression error that directly impacts a user.
These types of errors can be showstoppers, preventing users
from completing their work, so it’s important to identify and
resolve them quickly.

 Evaluate whether to integrate one or more low-code platform logs
into your existing security information and event management
(SIEM) tools. For example, a good candidate might be streaming
performance logs to a tool like Splunk that can aggregate
information across various environments and platforms.

 Collect metrics to establish an expectation for how the system
should perform under different scenarios. Periodically audit your
metrics to ensure thresholds are still useful.

 Configure alerting to push notifications of important events
to the appropriate people. Such events would likely include a
process failure or exceeding a time/resource usage threshold.

 Schedule health checks on a regular basis. Low-code
platforms can provide health dashboards to efficiently surface
runtime information, including metrics and key performance
indicators, as well as recommendations for continuous
improvement. You can also view a history of all health check
results on a health dashboard.

http://appian.com

appian.com | 20

The bigger picture: low-code infrastructure and DevOps.

Application development is not the only
area where low-code can support DevOps.
A best-in-class low-code platform should
handle 90% of the infrastructure work, such
as platform installation, upgrades, and
security patches, so your team can spend
time on more important issues. And over
time, the platform will continue improving in
the background, bringing automatic benefits
to your existing applications.

Powerful low-code platforms
keep your applications future-proof:

• Backward compatibility for platform upgrades gives you
confidence that everything you’ve already built will continue to
work, so you can skip regression testing.

• Automatic performance improvements are built into the platform—
so as the platform gets faster and more efficient, your applications
automatically get better.

• Your preferred hosting environment is supported, so you continue
to see its benefits, whether that’s the ease of a managed SaaS
offering or the control and flexibility of self-management.

• Forward compatibility is included for web browsers and native
mobile operating systems, even those that haven’t been released yet.

• Elastic scale allows you to respond automatically to rapid growth
and spikes in demand.

• Different deployment options are available, such as a traditional
web application, an offline mobile application, or a serverless
web application.

• Built-in security and compliance with standards, including GxP,
PCI, and ISO 27017 and 27018, make it easy to follow changing
global and local regulations.

http://appian.com

appian.com | 21

From dysfunctional separation to efficient collaboration.

DevOps first emerged when some software companies’ employees realized
that the traditional separation between development and IT operations
didn’t make sense for 21st century businesses. They started to shift the
software development culture toward cross-functional methods and teams.
Today, it’s clear this approach is exponentially more effective.

A similar unification of no-longer-advantageous boundaries is happening
now between DevOps and low-code. With the rising popularity of
enterprise-grade low-code platforms, we no longer need to keep
developers and business experts in separate boxes. More accessible,
collaborative development tools mean they can join forces to make greater
operational impacts faster.

And for IT developers who still have qualms about collaborating with
business experts using low-code tools that until recently were seen as
“toys,” here’s another historical precedent to keep in mind: when the first
microcomputers arrived, they too were dismissed as “toys,” but now there’s
not an organization of any size in any sector of the economy that doesn’t
run on them. Savvy DevOps folks know that low-code is one of the keys to
continued progress and success.

To learn more about how
low-code and DevOps can
accelerate time to value
for your organization, take
Appian for a test drive
with Appian Community
Edition, a free personal
development environment.

http://appian.com
https://appian.com/landing/community-edition/get-started.html
https://appian.com/landing/community-edition/get-started.html

appian.com

Appian helps organizations build
apps and workflows rapidly, with
a low-code platform. Combining
people, technologies, and data in
a single workflow, Appian can help
companies maximize their resources
and improve business results. Many
of the world’s largest organizations
use Appian applications to improve
customer experience, achieve
operational excellence, and simplify
global risk management and
compliance. For more information,
visit appian.com.

EB-775757534-V4

https://twitter.com/appian
http://www.appian.com/blog/
https://www.facebook.com/AppianCorporation
https://www.linkedin.com/company/appian-corporation/mycompany/
https://www.youtube.com/user/appianbpm
http://appian.com
http://appian.com

