
Efficient testing methods are becoming increasingly important to ensure teams produce high quality applications.
Implementing testing methods effectively help drive the following results:

Introduction

Methods
This one-pager identifies critical testing strategies that should be embedded in every Appian delivery team and recommends
others that are dependent upon the client and solution being developed. At the start of each project, determine which of
the project-specific methods will be utilized by your team.

Design Documents
By writing design documents, developers can identify
test cases before development starts. This is a core ten-
et of Test Driven Development. Designs should be re-
viewed as a team at the start of the sprint so others can
identify additional risks and test scenarios.

Expression Test Cases
Expression Rule Test Cases speed up bug discovery by
ensuring changes are backwards compatible by unit
testing rules as they are developed. They can be config-
ured to run automatically with the Automated Rule
Testing shared component.

Manual Unit Testing
Units test are executed on the smallest piece of code
that can logically be tested. For the Appian objects that
can’t be verified in an automated fashion, manual tests
should be carried out.

Peer Testing
A code review by a peer helps ensure best practices and
common design standards are followed. In addition,
functional peer testing should be carried out to ensure
all requirements are satisfied.

Exploratory Testing
Exploratory tests (ET) use general patterns of interacting
with the system, called heuristics, to identify defects.
Work with your team to incorporate ET into your estab-
lished testing efforts (SIT, peer, regression testing, etc.).

Acceptance Testing
Acceptance testing should be done at the conclusion of
every sprint to continuously collect feedback from
SME's, PO's, and end-users. Formalized User Acceptance
Testing (UAT) is held at defined points within the project
to collect feedback prior to the solution’s release.

Regression Testing

System Integration Testing
System Integration Testing (SIT) ensures the application
works cohesively. During SIT, the following are tested:
database connection, integrations with outside systems,
and work flows within the application. Work with your
project team to determine the best cadence for SIT.

Accessibility Testing
All teams should be designing with accessibility in mind,
but some clients enforce strict accessibility standards.
Screen readers like JAWS and NVDA can be used verify if
the application is 508 compliant.

Performance/Load Testing
Performance testing is a way to measure page load
times and resource utilization across the platform. The
results of performance testing will inform business deci-
sions, scaling considerations, and application design.

Automated End to End Testing
FitNesse for Appian with the FitFam shared component
and Cucumber for Appian allow developers to automate
functional and regression testing of the user interfaces
and workflow. The preferred tool will vary based on
tester, client infrastructure, and familiarity.

Conclusion Required Project Specific

Ensuring quality requires an investment throughout the project: design, development, testing, acceptance, and deployment.
The strategies outlined are proven to help teams deliver successful projects by allowing for feedback to be identified earlier,
when it’s less costly to address.

After major changes/deployments and established
points in the project, (hardening sprints, production roll-
out, etc.) regression tests should be executed to ensure
recent changes did not cause unanticipated impacts to
existing functionality.

Deployment Verification Testing
All release candidates should be deployed and verified
prior to a prod deployment. Smoke tests are executed to
ensure all environment properties, Appian objects, inte-
grations, and data have been promoted successfully.

https://community.appian.com/w/the-appian-playbook/1598/appian-user-story-design-template
https://www.agilealliance.org/glossary/tdd
https://docs.appian.com/suite/help/19.1/Expression_Rule_Testing.html
https://community.appian.com/b/appmarket/posts/automated-rule-testing-application
https://community.appian.com/b/appmarket/posts/automated-rule-testing-application
https://community.appian.com/w/the-appian-playbook/963/exploratory-testing
https://docs.appian.com/suite/help/19.1/building_accessible_applications.html
https://www.section508.gov/
https://community.appian.com/w/the-appian-playbook/161/performance-testing-methodology
https://community.appian.com/b/appmarket/posts/fit-fam-fitnesse-for-appian-generator
https://community.appian.com/b/appmarket/posts/fit-fam-fitnesse-for-appian-generator
https://community.appian.com/w/the-appian-playbook/1325/automated-testing-with-cucumber-for-appian

