Document Vector Database

Overview

The Document Vector Database Connected System enables Large Language Models (LLMs) to answer user submitted questions based on Appian Knowledge Center Documents. By uploading documents to this connected system, users can perform semantic searches to pinpoint the most pertinent content related to their questions. The Connected System also boasts Client APIs tailored for the AI Knowledge Assistant Component. This allows the AI Knowledge Assistant Component to deliver AI generated answers to user inquiries sourced from documents stored in the database, as well as general questions.

Key Features & Functionality

  1. Upload Document - Uploads and stores the documents and its vector in the database.
  2. List Documents - Provides us the list of documents uploaded in the database.
  3. Database Operations
    1. Delete Documents - Enables us to delete the documents that are uploaded in the database.
    2. Sync Documents - Updates the existing documents in the database with the latest version of the document available in the Appian Knowledge Center.
    3. Change Database Password - Changes Database password.
  4. Query Documents - Get relevant pieces of content from documents for the given prompt.
  5. Generate Response - Perform search in the given documents and generate ChatGPT response for the given prompt.
  6. Client APIs for AI Knowledge Assistant component for fetching document details, chat completions, document querying, and uploading new documents to the database.

Notes:

  • Download the AI Knowledge Assistant, a sophisticated chatbot designed to perform semantic searches across your documents and provide precise answers to your queries.
  • This plugin is not supported for HA environments.
Anonymous
  • v2.0.0 Release Notes
    1. Connected System Configuration Changes
      1. New Parameters: Added for Model/Deployment ID and Max Tokens (specific to Azure OpenAI Service) to enable the new Generate Response Integration.
      2. Database Username Removal: Now, only the Appian Username is required.
    2. Integration and Functionality Enhancements
      1. New Integration - Generate Response: This integration mimics AI Knowledge Assistant’s functionality by allowing documents to be queried based on a user’s question and sent to OpenAI to generate a response. A developer can now asynchronously call the ‘Generate Response’ integration, save this output, and pass this into the conversation parameter of the AI Assistant. This allows the AI Assistant to be automatically loaded with questions and answers when a user loads the interface.
      2. New Integration - Sync Documents: Updates the existing documents in the database with the latest version of the document available in the Appian Knowledge Center.
      3. Reduced Complexity: Chunk size and topK are now handled for the developer.
      4. New Parameter: Logged In User - loggedInUser() now required for all integrations to handle document security. Users will only be able to upload, delete, and view documents they have access to.
  • Hi  

    The generated doc has create user  username DDL command , where does it creates the user with the given username and password? Where can we check ?

  • Hi  ,

    Kindly answer the below questions:

    • Is there any external vector DB involved here where we can see our document embeddings?
    • In Appian as soon as we test connection this generated a database file, inside that DB we have lots of DDL, statements, and doc metadata, some chunks - who is responsible for triggers of that SQL?
    • Once embedded doc is generated , whatever documents we upload to vector DB via integration, those embedding gets stored in that same document only right , there is no other table/document involved in which we do indexing against our prompts? 

    Kindly let me know if we have correct understanding.

    Thanks

  • Is there any size limitation to the the embedded database that stored the vectors? Does the embedded db stored in APPIAN Cloud?

  • Thanks for reporting this; the issue is now resolved. Please update the connected system to V1.0.4.

  • Tried with both OpenAI and Azure Connected System, both results in successful connection, but integration throws error as mentioned above.

  • I am getting following error while upload a document using the connected system. Can anybody help me on this?

  • v1.0.3 Release Notes
    • Security patch attached

  • Simply search for the name you gave the database in the connected system by using the Appian objects search. This will allow you to find the embedded database document and the constant pointing to that document. If you want to create a new database with new documents, simply make a new connected system and name the database something different.